Archive for the ‘autism’ Category


Evidence of autism can be identified in the composition of blood vessels in the brain, and certain defects or malfunctions in these vessels could serve as a new basis for detection, scientists have found.

While previous research has focussed on the neurological structure and function in a patient’s brain, a team from New York University (NYU) has found evidence of the disorder in the vascular system, suggesting that this could be a new target for medical treatments.

“Our findings show that those afflicted with autism have unstable blood vessels, disrupting proper delivery of blood to the brain,” says lead researcher, Efrain Azmitia.

“In a typical brain, blood vessels are stable, thereby ensuring a stable distribution of blood,” she adds. “Whereas in the autism brain, the cellular structure of blood vessels continually fluctuates, which results in circulation that is fluctuating and, ultimately, neurologically limiting.”

Azmita and her colleagues figured this out by examining the auditory cortex region in human postmortem brain tissue from people with diagnosed autism spectrum disorder (ADS) and an age-matched control group. To mitigate bias, they stripped the samples of all identifiers so they couldn’t tell which was which when examining them at a cellular level.

They found significant increases of two types of protein, called nestin and CD34, in the autistic brain vessels, but not in the control brains, which indicated that the vessels of the autistic patients had a higher level of plasticity. This protein surge was identified in several sections of the autistic brains, including the superior temporal cortex, the fusiform cortex (or face recognition centre), the pons/midbrain, and cerebellum.

This kind of plasticity is characteristic of a process known as angiogenesis, which controls the the production of new blood vessels. Publishing in the Journal of Autism and Developmental Disorders, the researchers suggest that evidence of angiogenesis in autistic brain tissue indicates that these vessels are being formed over and over and are in a state of constant flux. This could mean that inside the brains of people with autism, there’s a significant level of instability in the blood’s delivery mechanism.

“We found that angiogenesis is correlated with more neurogenesis in other brain diseases, therefore there is the possibility that a change in brain vasculature in autism means a change in cell proliferation or maturation, or survival, and brain plasticity in general,” said one of the team, psychiatrist Maura Boldrini. “These changes could potentially affect brain networks.”

So what now? The researchers hope to continue their investigation into how blood vessels in the brain differ in people with and without ADS, and if they can confirm angiogenesis markers as a reliable indication of the disorder, they could have a new detection method on their hands, and perhaps even a new avenue of research for future treatments.

“It’s clear that there are changes in brain vascularisation in autistic individuals from two to 20 years that are not seen in normally developing individuals past the age of two years,” says Azmitia. “Now that we know this, we have new ways of looking at this disorder and, hopefully with this new knowledge, novel and more effective ways to address it.”

An image depicting the measurement of nasal airflow while a child is presented with pleasant and unpleasant odors. Throughout the 10-minute study the children were seated comfortably in front of a computer monitor while viewing a cartoon. The nasal airflow measurement and the presentation of odorants were done using a modified pediatric nasal cannula and a custom built olfactometer.

Imagine the way you might smell a rose. You’d take a nice big sniff to breathe in the sweet but subtle floral scent. Upon walking into a public restroom, you’d likely do just the opposite–abruptly limiting the flow of air through your nose. Now, researchers reporting in the Cell Press journal Current Biology on July 2 have found that people with autism spectrum disorder (ASD) don’t make this natural adjustment like other people do. Autistic children go right on sniffing in the same way, no matter how pleasant or awful the scent.

The findings suggest that non-verbal tests related to smell might serve as useful early indicators of ASD, the researchers say.

“The difference in sniffing pattern between the typically developing children and children with autism was simply overwhelming,” says Noam Sobel of the Weizmann Institute of Science in Israel.

Earlier evidence had indicated that people with autism have impairments in “internal action models,” the brain templates we rely on to seamlessly coordinate our senses and actions. It wasn’t clear if this impairment would show up in a test of the sniff response, however.

To find out, Sobel, along with Liron Rozenkrantz and their colleagues, presented 18 children with ASD and 18 normally developing children (17 boys and 1 girl in each group) with pleasant and unpleasant odors and measured their sniff responses. The average age of children in the study was 7. While typical children adjusted their sniffing within 305 milliseconds of smelling an odor, the researchers report, children on the autism spectrum showed no such response.

That difference in sniff response between the two groups of kids was enough to correctly classify them as children with or without a diagnosis of ASD 81% of the time. Moreover, the researchers report that increasingly aberrant sniffing was associated with increasingly severe autism symptoms, based on social but not motor impairments.

The findings suggest that a sniff test could be quite useful in the clinic, although the researchers emphasize that their test is in no way ready for that yet.

“We can identify autism and its severity with meaningful accuracy within less than 10 minutes using a test that is completely non-verbal and entails no task to follow,” Sobel says. “This raises the hope that these findings could form the base for development of a diagnostic tool that can be applied very early on, such as in toddlers only a few months old. Such early diagnosis would allow for more effective intervention.”

The researchers now plan to test whether the sniff-response pattern they’ve observed is specific to autism or whether it might show up also in people with other neurodevelopmental conditions. They also want to find out how early in life such a test might be used. But the most immediate question for Sobel is “whether an olfactory impairment is at the heart of the social impairment in autism.”

Current Biology, Rozenkrantz et al.: “A Mechanistic Link between Olfaction and Autism Spectrum Disorder” http://dx.​doi.​org/​10.​1016/​j.​cub.​2015.​05.​048

By Elizabeth Norton

A single dose of a century-old drug has eliminated autism symptoms in adult mice with an experimental form of the disorder. Originally developed to treat African sleeping sickness, the compound, called suramin, quells a heightened stress response in neurons that researchers believe may underlie some traits of autism. The finding raises the hope that some hallmarks of the disorder may not be permanent, but could be correctable even in adulthood.

That hope is bolstered by reports from parents who describe their autistic children as being caught behind a veil. “Sometimes the veil parts, and the children are able to speak and play more normally and use words that didn’t seem to be there before, if only for a short time during a fever or other stress” says Robert Naviaux, a geneticist at the University of California, San Diego, who specializes in metabolic disorders.

Research also shows that the veil can be parted. In 2007, scientists found that 83% of children with autism disorders showed temporary improvement during a high fever. The timing of a fever is crucial, however: A fever in the mother can confer a higher risk for the disorder in the unborn child.

As a specialist in the cell’s life-sustaining metabolic processes, Naviaux was intrigued. Autism is generally thought to result from scrambled signals at synapses, the points of contact between nerve cells. But given the specific effects of something as general as a fever, Naviaux wondered if the problem lay “higher up” in the cell’s metabolism.

To test the idea, he and colleagues focused on a process called the cell danger response, by which the cell protects itself from threats like infection, temperature changes, and toxins. As part of this strategy, Naviaux explains, “the cells behave like countries at war. They harden their borders. They don’t trust their neighbors.” If the cells in question are neurons, he says, disrupted communication could result—perhaps underlying the social difficulties; heightened sensitivity to sights, sounds, and sensations; and intolerance for anything new that often afflict patients with autism.

The key player may be ATP, the chief carrier of energy within a cell, which can also relay messages to other nearby cells. When too much ATP is released for too long, it can induce a hair-trigger cell danger response in neighboring neurons. In 2013, Naviaux spelled out his hypothesis that autism involves a prolonged, heightened cell danger response, disrupting pathways within and between neurons and contributing to the symptoms of the disorder.

The same year, he and his colleagues homed in on the drug suramin as a way to call off the response. The medication has been in use since the early 20th century to kill the organisms that cause African sleeping sickness. In 1988, it was found to block the so-called purinergic receptors, which bind to compounds called purines and pyrimidines—including ATP. These receptors are found on every cell in the body; on neurons, they help orchestrate many of the processes impaired in autism—such as brain development, the production of new synapses, inflammation, and motor coordination.

To determine if suramin could protect these receptors from overstimulation by ATP, Naviaux’s team worked with mice that developed an autism-like disorder after their mothers had been exposed to a simulated viral infection (and heightened cell danger responses) during pregnancy. Like children with autism, the mice born after these pregnancies were less social and did not seek novelty; they avoided unfamiliar mice and passed up the chance to explore new runs of a maze. In the 2013 paper, the researchers reported that these traits vanished after weekly injections of suramin begun when the mice were 6 weeks old (equivalent to 15-year-old humans). Many consequences of altered metabolism—including the structure of synapses, body temperature, the production of key receptors, and energy transport within neurons—were either corrected or improved.

In the new study, published online today in Translational Psychiatry, the researchers found equally compelling results after a single injection of suramin given to 6-month-old mice (equivalent to 30-year-old humans) with the same autism-like condition. Once again, previously reclusive animals approached unknown mice and investigated unfamiliar parts of a maze, suggesting that the animals had overcome the aversion to novelty that’s a hallmark of autism in children. After the single injection, the team lowered the levels of suramin by half each week. Within 5 weeks most, but not all, of the benefits of treatment had been lost. The drug also corrected 17 of 18 metabolic pathways that are disrupted in mice with autism-like symptoms.

Naviaux cautions that mice aren’t people, and therapies that are promising in rodents have a track record of not panning out in humans. He also says that prolonged treatment with suramin is not an option for children, because it can have side effects such as anemia with long-term use. He notes that there are 19 different kinds of purinergic receptors; if suramin does prove to be helpful in humans, newer drugs could be developed that would target only one or a few key receptors. The researchers are beginning a small clinical trial in humans of a single dose of suramin that they hope will be completed by the end of the year.

The study is exciting, says Bruce Cohen, a pediatric neurologist at Akron Children’s Hospital in Ohio. “The authors have come up with a novel idea, tested it thoroughly, and got a very positive response after one dose.” He notes, however, that the mice with a few characteristics of autism don’t necessarily reflect the entire condition in humans. “Autism isn’t a disease. It’s a set of behaviors contributing to hundreds of conditions and resulting from multiple genes and environmental effects. Great work starts with a single study like this one, but there’s more work to be done.”

The National Center for Health Statistics has found that 7.5 percent of American schoolchildren between the ages of six and 17 had been prescribed and taking pills for emotional or behavioral difficulties.

That is one in every 13 kids.

The study also found that more than half (55 percent) of the parents of the participants said that the medications helped their children “a lot,” while another 26 percent said it helped “some.”

The researchers were unable to identify the specific medications prescribed to the children, however they did make some discoveries regarding race and gender of the children on these medications.

Significantly more boys than girls were given medication; about 9.7 percent of boys compared with 5.2 percent of girls.

Older girls were more likely than younger females to be put on medication.

White children were the most likely to be on psychiatric medications (9.2 percent), followed by Black children (7.4 percent) and Hispanic children (4.5 percent).

Children on Medicaid or a Children’s Health Insurance Program (CHIP) were more likely on medication for emotional and behavioral problems (9.9 percent), versus 6.7 percent of kids with private insurance and only 2.7 percent of uninsured children.

Parents of younger children (between ages 6 and 11) were slightly more likely to feel the medications helped “a lot” compared to those of older children.

Parents of males were also more likely to feel the medications helped “a lot” — about 58 percent of parents of males reported that they helped “a lot” compared to 50 percent of the parents of females.

Parents with incomes less than 100 percent of the federal poverty level were the least likely to feel the medications helped “a lot”. Just 43 percent of these parents said the medications helped “a lot”, while about 31 percent said they helped “some”.

More families living below 100 percent of the federal poverty level had children taking medications for emotional and behavioral problems than those above the federal poverty level.

Thanks to Da Brayn for bringing this to the attention of the It’s Interesting community.


Humans have an impressive ability to take on other viewpoints – it’s crucial for a social species like ours. So why are some of us better at it than others?

Picture two friends, Sally and Anne, having a drink in a bar. While Sally is in the bathroom, Anne decides to buy another round, but she notices that Sally has left her phone on the table. So no one can steal it, Anne puts the phone into her friend’s bag before heading to the bar. When Sally returns, where will she expect to see her phone?

If you said she would look at the table where she left it, congratulations! You have a theory of mind – the ability to understand that another person may have knowledge, ideas and beliefs that differ from your own, or from reality.

If that sounds like nothing out of the ordinary, perhaps it’s because we usually take it for granted. Yet it involves doing something no other animal can do to the same extent: temporarily setting aside our own ideas and beliefs about the world – that the phone is in the bag, in this case – in order to take on an alternative world view.

This process, also known as “mentalising”, not only lets us see that someone else can believe something that isn’t true, but also lets us predict other people’s behaviour, tell lies, and spot deceit by others. Theory of mind is a necessary ingredient in the arts and religion – after all, a belief in the spirit world requires us to conceive of minds that aren’t present – and it may even determine the number of friends we have.

Yet our understanding of this crucial aspect of our social intelligence is in flux. New ways of investigating and analysing it are challenging some long-held beliefs. As the dust settles, we are getting glimpses of how this ability develops, and why some of us are better at it than others. Theory of mind has “enormous cultural implications”, says Robin Dunbar, an evolutionary anthropologist at the University of Oxford. “It allows you to look beyond the world as we physically see it, and imagine how it might be different.”

The first ideas about theory of mind emerged in the 1970s, when it was discovered that at around the age of 4, children make a dramatic cognitive leap. The standard way to test a child’s theory of mind is called the Sally-Anne test, and it involves acting out the chain of events described earlier, only with puppets and a missing ball.

When asked, “When Sally returns, where will she look for the ball?”, most 3-year-olds say with confidence that she’ll look in the new spot, where Anne has placed it. The child knows the ball’s location, so they cannot conceive that Sally would think it was anywhere else.

Baby change
But around the age of 4, that changes. Most 4 and 5-year olds realise that Sally will expect the ball to be just where she left it.

For over two decades that was the dogma, but more recently those ideas have been shaken. The first challenge came in 2005, when it was reported in Science (vol 308, p 255) that theory of mind seemed to be present in babies just 15 months old.

Such young children cannot answer questions about where they expect Sally to look for the ball, but you can tell what they’re thinking by having Sally look in different places and noting how long they stare: babies look for longer at things they find surprising.

When Sally searched for a toy in a place she should not have expected to find it, the babies did stare for longer. In other words, babies barely past their first birthdays seemed to understand that people can have false beliefs. More remarkable still, similar findings were reported in 2010 for 7-month-old infants (Science, vol 330, p 1830).

Some say that since theory of mind seems to be present in infants, it must be present in young children as well. Something about the design of the classic Sally-Anne test, these critics argue, must be confusing 3-year-olds.

Yet there’s another possibility: perhaps we gain theory of mind twice. From a very young age we possess a basic, or implicit, form of mentalising, so this theory goes, and then around age 4, we develop a more sophisticated version. The implicit system is automatic but limited in its scope; the explicit system, which allows for a more refined understanding of other people’s mental states, is what you need to pass the Sally-Anne test.

If you think that explanation sounds complicated, you’re not alone. “The key problem is explaining why you would bother acquiring the same concept twice,” says Rebecca Saxe, a cognitive scientist at Massachusetts Institute of Technology.

Yet there are other mental skills that develop twice. Take number theory. Long before they can count, infants have an ability to gauge rough quantities; they can distinguish, for instance, between a general sense of “threeness” and “fourness”. Eventually, though, they do learn to count and multiply and so on, although the innate system still hums beneath the surface. Our decision-making ability, too, may develop twice. We seem to have an automatic and intuitive system for making gut decisions, and a second system that is slower and more explicit.

So perhaps we also have a dual system for thinking about thoughts, says Ian Apperly, a cognitive scientist at the University of Birmingham, UK. “There might be two kinds of processes, on the one hand for speed and efficiency, and on the other hand for flexibility,” he argues (Psychological Review, vol 116, p 953).

Apperly has found evidence that we still possess the fast implicit system as adults. People were asked to study pictures showing a man looking at dots on a wall; sometimes the man could see all the dots, sometimes not. When asked how many dots there were, volunteers were slower and less accurate if the man could see fewer dots than they could. Even when trying not to take the man’s perspective into account, they couldn’t help but do so, says Apperly. “That’s a strong indication of an automatic process,” he says – in other words, an implicit system working at an unconscious level.

If this theory is true, it suggests we should pay attention to our gut feelings about people’s state of mind, says Apperly. Imagine surprising an intruder in your home. The implicit system might help you make fast decisions about what they see and know, while the explicit system could help you to make more calculated judgments about their motives. “Which system is better depends on whether you have time to make the more sophisticated judgement,” says Apperly.

The idea that we have a two-tier theory of mind is gaining ground. Further support comes from a study of people with autism, a group known to have difficulty with social skills, who are often said to lack theory of mind. In fact, tests on a group of high-functioning people with Asperger’s syndrome, a form of autism, showed they had the explicit system, yet they failed at non-verbal tests of the kind that reveal implicit theory of mind in babies (Science, vol 325, p 883). So people with autism can learn explicit mentalising skills, even without the implicit system, although the process remains “a little bit cumbersome” says Uta Frith, a cognitive scientist at University College London, who led the work. The finding suggests that the capacity to understand others should not be so easily written off in those with autism. “They can handle it when they have time to think about it,” says Frith.

If theory of mind is not an all-or-nothing quality, does that help explain why some of us seem to be better than others at putting ourselves into other people’s shoes? “Clearly people vary,” points out Apperly. “If you think of all your colleagues and friends, some are socially more or less capable.”

Unfortunately, that is not reflected in the Sally-Anne test, the mainstay of theory of mind research for the past four decades. Nearly everyone over the age of 5 can pass it standing on their head.

To get the measure of the variation in people’s abilities, different approaches are needed. One is called the director task; based on a similar idea to Apperly’s dot pictures, this involves people moving objects around on a grid while taking into account the viewpoint of an observer. This test reveals how children and adolescents improve progressively as they mature, only reaching a plateau in their 20s.

How does that timing square with the fact that the implicit system – which the director test hinges on – is supposed to emerge in early infancy? Sarah-Jayne Blakemore, a cognitive neuroscientist at University College London who works with Apperly, has an answer. What improves, she reckons, is not theory of mind per se but how we apply it in social situations using cognitive skills such as planning, attention and problem-solving, which keep developing during adolescence. “It’s the way we use that information when we make decisions,” she says.

So teenagers can blame their reputation for being self-centred on the fact they are still developing their theory of mind. The good news for parents is that most adolescents will learn how to put themselves in others’ shoes eventually. “You improve your skills by experiencing social scenarios,” says Frith.

It is also possible to test people’s explicit mentalising abilities by asking them convoluted “who-thought-what-about-whom” questions. After all, we can do better than realising that our friend mistakenly thinks her phone will be on the table. If such a construct represents “second-order” theory of mind, most of us can understand a fourth-order sentence like: “John said that Michael thinks that Anne knows that Sally thinks her phone will be on the table.”

In fact Dunbar’s team has shown that such a concept would be the limit of about 20 per cent of the general population (British Journal of Psychology, vol 89, p 191). Sixty per cent of us can manage fifth-order theory of mind and the top 20 per cent can reach the heights of sixth order.

As well as letting us keep track of our complex social lives, this kind of mentalising is crucial for our appreciation of works of fiction. Shakespeare’s genius, according to Dunbar, was to make his audience work at the edge of their ability, tracking multiple mind states. In Othello, for instance, the audience has to understand that Iago wants jealous Othello to mistakenly think that his wife Desdemona loves Cassio. “He’s able to lift the audience to his limits,” says Dunbar.

So why do some of us operate at the Bard’s level while others are less socially capable? Dunbar argues it’s all down to the size of our brains.

According to one theory, during human evolution the prime driver of our expanding brains was the growing size of our social groups, with the resulting need to keep track of all those relatives, rivals and allies. Dunbar’s team has shown that among monkeys and apes, those living in bigger groups have a larger prefrontal cortex. This is the outermost section of the brain covering roughly the front third of our heads, where a lot of higher thought processes go on.

Last year, Dunbar applied that theory to a single primate species: us. His team got 40 people to fill in a questionnaire about the number of friends they had, and then imaged their brains in an MRI scanner. Those with the biggest social networks had a larger region of the prefrontal cortex tucked behind the eye sockets. They also scored better on theory of mind tests (Proceedings of the Royal Society B, vol 279, p 2157). “The size of the bits of prefrontal cortex involved in mentalising determine your mentalising competencies,” says Dunbar. “And your mentalising competencies then determine the number of friends you have.” It’s a bold claim, and one that has not convinced everyone in the field. After all, correlation does not prove causation. Perhaps having lots of friends makes this part of the brain grow bigger, rather than the other way round, or perhaps a large social network is a sign of more general intelligence.

Lying robots
What’s more, there seem to be several parts of the brain involved in mentalising – perhaps unsurprisingly for such a complex ability. In fact, so many brain areas have been implicated that scientists now talk about the theory of mind “network” rather than a single region.

A type of imaging called fMRI scanning, which can reveal which parts of the brain “light up” for specific mental functions, strongly implicates a region called the right temporoparietal junction, located towards the rear of the brain, as being crucial for theory of mind. In addition, people with damage to this region tend to fail the Sally-Anne test.

Other evidence has emerged for the involvement of the right temporoparietal junction. When Rebecca Saxe temporarily disabled that part of the brain in healthy volunteers, by holding a magnet above the skull, they did worse at tests that involved considering others’ beliefs while making moral judgments (PNAS, vol 107, p 6753).

Despite the explosion of research in this area in recent years, there is still lots to learn about this nifty piece of mental machinery. As our understanding grows, it is not just our own skills that stand to improve. If we can figure out how to give mentalising powers to computers and robots, they could become a lot more sophisticated. “Part of the process of socialising robots might draw upon things we’re learning from how people think about people,” Apperly says.

For instance, programmers at the Georgia Institute of Technology in Atlanta have developed robots that can deceive each other and leave behind false clues in a high-tech game of hide-and-seek. Such projects may ultimately lead to robots that can figure out the thoughts and intentions of people.

For now, though, the remarkable ability to thoroughly worm our way into someone else’s head exists only in the greatest computer of all – the human brain.

(Article by Kirsten Weir, who is a science writer based in Minneapolis).


After most pregnancies, the placenta is thrown out, having done its job of nourishing and supporting the developing baby.

But a new study raises the possibility that analyzing the placenta after birth may provide clues to a child’s risk for developing autism. The study, which analyzed placentas from 217 births, found that in families at high genetic risk for having an autistic child, placentas were significantly more likely to have abnormal folds and creases.

“It’s quite stark,” said Dr. Cheryl K. Walker, an obstetrician-gynecologist at the Mind Institute at the University of California, Davis, and a co-author of the study, published in the journal Biological Psychiatry. “Placentas from babies at risk for autism, clearly there’s something quite different about them.”

Researchers will not know until at least next year how many of the children, who are between 2 and 5, whose placentas were studied will be found to have autism. Experts said, however, that if researchers find that children with autism had more placental folds, called trophoblast inclusions, visible after birth, the condition could become an early indicator or biomarker for babies at high risk for the disorder.

“It would be really exciting to have a real biomarker and especially one that you can get at birth,” said Dr. Tara Wenger, a researcher at the Center for Autism Research at Children’s Hospital of Philadelphia, who was not involved in the study.

The research potentially marks a new frontier, not only for autism, but also for the significance of the placenta, long considered an after-birth afterthought. Now, only 10 percent to 15 percent of placentas are analyzed, usually after pregnancy complications or a newborn’s death.

Dr. Harvey J. Kliman, a research scientist at the Yale School of Medicine and lead author of the study, said the placenta had typically been given such little respect in the medical community that wanting to study it was considered equivalent to someone in the Navy wanting to scrub ships’ toilets with a toothbrush. But he became fascinated with placentas and noticed that inclusions often occurred with births involving problematic outcomes, usually genetic disorders.

He also noticed that “the more trophoblast inclusions you have, the more severe the abnormality.” In 2006, Dr. Kliman and colleagues published research involving 13 children with autism, finding that their placentas were three times as likely to have inclusions. The new study began when Dr. Kliman, looking for more placentas, contacted the Mind Institute, which is conducting an extensive study, called Marbles, examining potential causes of autism.

“This person came out of the woodwork and said, ‘I want to study trophoblastic inclusions,’ ” Dr. Walker recalled. “Now I’m fairly intelligent and have been an obstetrician for years and I had never heard of them.”

Dr. Walker said she concluded that while “this sounds like a very smart person with a very intriguing hypothesis, I don’t know him and I don’t know how much I trust him.” So she sent him Milky Way bar-size sections of 217 placentas and let him think they all came from babies considered at high risk for autism because an older sibling had the disorder. Only after Dr. Kliman had counted each placenta’s inclusions did she tell him that only 117 placentas came from at-risk babies; the other 100 came from babies with low autism risk.

She reasoned that if Dr. Kliman found that “they all show a lot of inclusions, then maybe he’s a bit overzealous” in trying to link inclusions to autism. But the results, she said, were “astonishing.” More than two-thirds of the low-risk placentas had no inclusions, and none had more than two. But 77 high-risk placentas had inclusions, 48 of them had two or more, including 16 with between 5 and 15 inclusions.

Dr. Walker said that typically between 2 percent and 7 percent of at-risk babies develop autism, and 20 percent to 25 percent have either autism or another developmental delay. She said she is seeing some autism and non-autism diagnoses among the 117 at-risk children in the study, but does not yet know how those cases match with placental inclusions.

Dr. Jonathan L. Hecht, associate professor of pathology at Harvard Medical School, said the study was intriguing and “probably true if it finds an association between these trophoblast inclusions and autism.” But he said that inclusions were the placenta’s way of responding to many kinds of stress, so they might turn out not to be specific enough to predict autism.

Dr. Kliman calls inclusions a “check-engine light, a marker of: something’s wrong, but I don’t know what it is.”

That’s how Chris Mann Sullivan sees it, too. Dr. Sullivan, a behavioral analyst in Morrisville, N.C., was not in the study, but sent her placenta to Dr. Kliman after her daughter Dania, now 3, was born. He found five inclusions. Dr. Sullivan began intensive one-on-one therapy with Dania, who has not been given a diagnosis of autism, but has some relatively mild difficulties.

“What would have happened if I did absolutely nothing, I’m not sure,” Dr. Sullivan said. “I think it’s a great way for parents to say, ‘O.K., we have some risk factors; we’re not going to ignore it.’ ”

Thanks to Dr. Rajadhyaksha for bringing this to the attention of the It’s Interesting community.

Structure of the CACNA1C gene product, a calcium channel named Cav1.2, which is one of 4 genes that has now been found to be genetically held in common amongst schizophrenia, bipolar disorder, autism, major depression and attention deficit hyperactivity disoder. Groundbreaking work on the role of this protein on anxiety and other forms of behavior related to mental illness has previously been established in the Rajadhyaksha laboratory at Weill Cornell Medical Center.

From the New York Times:
The psychiatric illnesses seem very different — schizophrenia, bipolar disorder, autism, major depression and attention deficit hyperactivity disorder. Yet they share several genetic glitches that can nudge the brain along a path to mental illness, researchers report. Which disease, if any, develops is thought to depend on other genetic or environmental factors.

Their study, published online Wednesday in the Lancet, was based on an examination of genetic data from more than 60,000 people worldwide. Its authors say it is the largest genetic study yet of psychiatric disorders. The findings strengthen an emerging view of mental illness that aims to make diagnoses based on the genetic aberrations underlying diseases instead of on the disease symptoms.

Two of the aberrations discovered in the new study were in genes used in a major signaling system in the brain, giving clues to processes that might go awry and suggestions of how to treat the diseases.

“What we identified here is probably just the tip of an iceberg,” said Dr. Jordan Smoller, lead author of the paper and a professor of psychiatry at Harvard Medical School and Massachusetts General Hospital. “As these studies grow we expect to find additional genes that might overlap.”

The new study does not mean that the genetics of psychiatric disorders are simple. Researchers say there seem to be hundreds of genes involved and the gene variations discovered in the new study confer only a small risk of psychiatric disease.

Steven McCarroll, director of genetics for the Stanley Center for Psychiatric Research at the Broad Institute of Harvard and M.I.T., said it was significant that the researchers had found common genetic factors that pointed to a specific signaling system.

“It is very important that these were not just random hits on the dartboard of the genome,” said Dr. McCarroll, who was not involved in the new study.

The work began in 2007 when a large group of researchers began investigating genetic data generated by studies in 19 countries and including 33,332 people with psychiatric illnesses and 27,888 people free of the illnesses for comparison. The researchers studied scans of people’s DNA, looking for variations in any of several million places along the long stretch of genetic material containing three billion DNA letters. The question: Did people with psychiatric illnesses tend to have a distinctive DNA pattern in any of those locations?

Researchers had already seen some clues of overlapping genetic effects in identical twins. One twin might have schizophrenia while the other had bipolar disorder. About six years ago, around the time the new study began, researchers had examined the genes of a few rare families in which psychiatric disorders seemed especially prevalent. They found a few unusual disruptions of chromosomes that were linked to psychiatric illnesses. But what surprised them was that while one person with the aberration might get one disorder, a relative with the same mutation got a different one.

Jonathan Sebat, chief of the Beyster Center for Molecular Genomics of Neuropsychiatric Diseases at the University of California, San Diego, and one of the discoverers of this effect, said that work on these rare genetic aberrations had opened his eyes. “Two different diagnoses can have the same genetic risk factor,” he said.

In fact, the new paper reports, distinguishing psychiatric diseases by their symptoms has long been difficult. Autism, for example, was once called childhood schizophrenia. It was not until the 1970s that autism was distinguished as a separate disorder.

But Dr. Sebat, who did not work on the new study, said that until now it was not clear whether the rare families he and others had studied were an exception or whether they were pointing to a rule about multiple disorders arising from a single genetic glitch.

“No one had systematically looked at the common variations,” in DNA, he said. “We didn’t know if this was particularly true for rare mutations or if it would be true for all genetic risk.” The new study, he said, “shows all genetic risk is of this nature.”

The new study found four DNA regions that conferred a small risk of psychiatric disorders. For two of them, it is not clear what genes are involved or what they do, Dr. Smoller said. The other two, though, involve genes that are part of calcium channels, which are used when neurons send signals in the brain.

“The calcium channel findings suggest that perhaps — and this is a big if — treatments to affect calcium channel functioning might have effects across a range of disorders,” Dr. Smoller said.

There are drugs on the market that block calcium channels — they are used to treat high blood pressure — and researchers had already postulated that they might be useful for bipolar disorder even before the current findings.

One investigator, Dr. Roy Perlis of Massachusetts General Hospital, just completed a small study of a calcium channel blocker in 10 people with bipolar disorder and is about to expand it to a large randomized clinical trial. He also wants to study the drug in people with schizophrenia, in light of the new findings. He cautions, though, that people should not rush out to take a calcium channel blocker on their own.

“We need to be sure it is safe and we need to be sure it works,” Dr. Perlis said.



A drug used for decades to treat high blood pressure and other conditions has shown promise in a small clinical trial for autism. The drug, bumetanide, reduced the overall severity of behavioral symptoms after 3 months of daily treatment. The researchers say that many parents of children who received the drug reported that their children were more “present” and engaged in social interactions after taking it. The new findings are among several recent signs that treatments to address the social deficits at the core of autism may be on the horizon.

Several lines of evidence suggest that autism interferes with the neurotransmitter GABA, which typically puts a damper on neural activity. Bumetanide may enhance the inhibitory effects of GABA, and the drug has been used safely as a diuretic to treat a wide range of heart, lung, and kidney conditions. In the new study, researchers led by Yehezkel Ben-Ari at the Mediterranean Institute of Neurobiology in Marseille, France, recruited 60 autistic children between the ages of 3 and 11 and randomly assigned them to receive either a daily pill of bumetanide or a placebo. (Neither the children’s parents nor the researchers who assessed the children knew who received the actual drug.)

As a group, those who got bumetanide improved by 5.6 points on a 60-point scale that’s often used to assess behaviors related to autism, the researchers report today in Translational Psychiatry. That was enough to nudge the group average just under the cutoff for severe autism and into the mild to medium category. The study did not look directly at whether the drug improved all symptoms equally or some more than others. “We have some indications that the symptoms particularly ameliorated with bumetanide are the genuine core symptoms of autism, namely communication and social interactions,” Ben-Ari says. More work will be needed to verify that impression. Ben-Ari says his team is now preparing for a larger, multicenter trial in Europe.

The current study already looks interesting to some. “It’s enough to make me think about trying it in a few of my autism patients who haven’t responded to other interventions,” says Randi Hagerman, a pediatrician who studies neurodevelopmental disorders at the University of California, Davis. Social interactions tend to be reinforcing, Hagerman adds, so getting an autistic child to start interacting more can have a positive effect on subsequent brain development.

Other drugs have recently shown promise for autism. In September, Hagerman and colleagues reported that arbaclofen, a drug that stimulates a type of GABA receptor, reduced social avoidance in people with fragile X syndrome, a genetic disorder that shares many features with autism. Many researchers are also hopeful about clinical trials under way with drugs that block certain receptors for glutamate, the main neurotransmitter in the brain that excites neural activity. Results from those trials should come out next year.

All of this work, including the new study, suggests that drugs that reduce neural excitation by blocking glutamate or enhance inhibition by boosting GABA may be helpful for treating autism, says Elizabeth Berry-Kravis, a pediatric neurologist at Rush University in Chicago, Illinois, and a collaborator on the recent arbaclofen study. “There seems to be this imbalance between excitation and inhibition in people with autism.”

That’s a potentially game-changing insight. Now doctors can only prescribe drugs that treat individual symptoms of autism rather than the underlying cause of the disorder, Berry-Kravis says. Doctors often prescribe antipsychotic drugs to reduce irritability, for example, but those drugs don’t address the social and communication problems at the heart of the disorder. “It’s exciting that now we’re thinking about the underlying mechanisms and treating those.”






As the number of children with autism has risen dramatically over the past couple of decades, experts have learned that the earlier a child gets diagnosed, the earlier specialized therapy can be initiated, which can significantly improve outcomes.

Now researchers have been able to show that a particular type of behavioral therapy called the Early Start Denver Model (ESDM) not only improves autism symptoms, but actually normalizes brain activity and improves social behavior.

Autism is a neurodevelopmental disorder that starts to become very apparent around age 3. The main signs and symptoms of autism involve communication, social interactions and repetitive behaviors. According to the latest statistics from the U.S. Centers for Disease Control and Prevention, one in 88 children currently is diagnosed with autism, including one in 54 boys.

“Early intervention alters the trajectory of the brain and social development in children with autism,” says Geraldine Dawson, the lead study author who developed the ESDM therapy along with study co-author Sally Rogers.

Dawson was a researcher at the University of Washington when she helped devise ESDM; she’s now the chief science officer for the advocacy and research group Autism Speaks and a professor at the University of North Carolina. Rogers is a professor and researcher at the University of California Davis MIND Institute.

ESDM therapy uses teaching methods from ABA ,or applied behavioral analysis, the traditional one-on-one interaction between a child and the therapist.

But rather than sitting at a desk next to the child — where a teacher or therapist breaks down complex tasks into small components and gives tangible reinforcements — children receiving ESDM are sitting on the floor, playing with their therapist or parents.

It can be done just about anywhere, and Dawson says the play-based method of engaging a child helps him or her develop a social relationship.

The study began with 48 children in Seattle and Sacramento, California, who were between who were between 1 1/2 and 2 1/2 years old. Half of the children received a total of 20 hours of ESDM therapy over five days a week.

But since parents can be taught the methods in just a few hours, they could engage their children using the ESDM method as well. The other half of the toddlers received community-based interventions, which included in some individual therapist sessions and some day care-based sessions. The number of hours spent with therapists was the same in both groups.

Three years ago, Rogers and Dawson published their first findings from this study and found that children receiving ESDM therapy increased their IQ and language skills three times more than children in the community-intervention group.

That in itself was “very significant,” says Dr. Thomas Insel, director of the National Institute of Mental Health, because it proved that early detection and intervention leads to improved outcomes.

In their latest study, published Friday in the Journal of the American Academy of Child & Adolescent Psychiatry, Rogers and Dawson show what parts of a child’s brain are active after two years of therapy, compared to typically developing children, using an EEG (electroencephalogram). In an EEG, electrical activity in different parts of the brain is measured using electrodes that attached to the child’s head.

“If the child wiggles too much, the data is not interpretable,” says Dawson.

In the end, researchers could only get 60% of the children to sit still enough to get usable EEG results, she says, but that was true in both the group of children with autism and those without.

Fifteen children in the EDSM group, 14 in the community intervention group and 17 typically developing children underwent EEGs while looking at pictures of faces (social stimuli) vs. pictures of toys (nonsocial stimuli).

Technicians measuring the brain activity had no idea which children had autism and which did not.

“Children who received ESDM now showed a normal (brain) response, identical to typical 4-year-olds,” Dawson tells CNN. That wasn’t the case with most children who didn’t have ESDM therapy.

Babies are naturally drawn to people and faces, and their brains show greater responses when they look at a face, compared to an object or a toy, Dawson says.

But in young and even older children with autism, the opposite happens. The part of the brain that should be responding to a face or social activity doesn’t light up, but the part of the brain that responds to objects is more active.

Insel says this study shows that the ESDM form of therapy “not only changes behavior, it changes the brain.”

The exact cause, or more precisely causes, of autism are unknown and there is no cure.

Parents and pediatricians are urged to look for early signs of autism including: little or no eye contact, lack of or delay of spoken language, repetitive use of language and behaviors and persistent fixation on parts of objects.

Since 2007, the American Academy of Pediatrics recommends that pediatricians screen 18- and 24-month-old toddlers for signs of autism.

When something is wrong in the brain — not just in autism, but also in diseases like Alzheimer’s and Parkinson’s — what’s causing the disease is occurring much earlier than when symptoms appear, Insel explains.

Based on the new findings, perhaps using EEGs to measure this type of brain activity could be a biomarker for autism, he says. A biomarker is a distinct characteristic that indicates a particular condition.

Measuring a baby’s brain activity as early as 3 and 6 months could identify changes in the brain before changes in behavior are noticed, he says, and therapy could begin even earlier.

The ESDM model could be applied as early as 12 months, say Dawson and Rogers.

More research will probably have to be done to confirm the biomarker. So until there is a definitive test for diagnosing autism, Dawson says this it’s even more important that pediatricians screen children for autism as early as possible.

“The average age of diagnosis is still 4 and 5 and even older in minority groups,” she says. “We really need to close the gap.”

Autism Speaks has many tools on its website to help parents see what a child with autism looks like compared to a typically developing child. There are also many tool kits to help families of children with autism.

False information is pervasive and difficult to eradicate, but scientists are developing new strategies such as “de-biasing,” a method that focuses on facts, to help spread the truth.

ByCarrie Arnold

A recurring red herring in the current presidential campaign is the verity of President Barack Obama’s birth certificate. Although the president has made this document public, and records of his 1961 birth in Honolulu have been corroborated by newspaper announcements, a vocal segment of the population continues to insist that Obama’s birth certificate proving U.S. citizenship is a fraud, making him legally ineligible to be president. A Politico survey found that a majority of voters in the 2011 Republican primary shared this clearly false belief.

Scientific issues can be just as vulnerable to misinformation campaigns. Plenty of people still believe that vaccines cause autism and that human-caused climate change is a hoax. Science has thoroughly debunked these myths, but the misinformation persists in the face of overwhelming evidence. Straightforward efforts to combat the lies may backfire as well. A paper published on September 18 in Psychological Science in the Public Interest (PSPI) says that efforts to fight the problem frequently have the opposite effect.

“You have to be careful when you correct misinformation that you don’t inadvertently strengthen it,” says Stephan Lewandowsky, a psychologist at the University of Western Australia in Perth and one of the paper’s authors. “If the issues go to the heart of people’s deeply held world views, they become more entrenched in their opinions if you try to update their thinking.”

Psychologists call this reaction belief perseverance: maintaining your original opinions in the face of overwhelming data that contradicts your beliefs. Everyone does it, but we are especially vulnerable when invalidated beliefs form a key part of how we narrate our lives. Researchers have found that stereotypes, religious faiths and even our self-concept are especially vulnerable to belief perseverance. A 2008 study in the Journal of Experimental Social Psychology found that people are more likely to continue believing incorrect information if it makes them look good (enhances self-image). For example, if an individual has become known in her community for purporting that vaccines cause autism, she might build her self-identity as someone who helps prevent autism by helping other parents avoid vaccination. Admitting that the original study linking autism to the MMR (measles–mumps–rubella) vaccine was ultimately deemed fraudulent would make her look bad (diminish her self-concept).

In this circumstance, it is easier to continue believing that autism and vaccines are linked, according to Dartmouth College political science researcher Brendan Nyhan. “It’s threatening to admit that you’re wrong,” he says. “It’s threatening to your self-concept and your worldview.” It’s why, Nyhan says, so many examples of misinformation are from issues that dramatically affect our lives and how we live.

Ironically, these issues are also the hardest to counteract. Part of the problem, researchers have found, is how people determine whether a particular statement is true. We are more likely to believe a statement if it confirms our preexisting beliefs, a phenomenon known as confirmation bias. Accepting a statement also requires less cognitive effort than rejecting it. Even simple traits such as language can affect acceptance: Studies have found that the way a statement is printed or voiced (or even the accent) can make those statements more believable. Misinformation is a human problem, not a liberal or conservative one, Nyhan says.

Misinformation is even more likely to travel and be amplified by the ongoing diversification of news sources and the rapid news cycle. Today, publishing news is as simple as clicking “send.” This, combined with people’s tendency to seek out information that confirms their beliefs, tends to magnify the effects of misinformation. Nyhan says that although a good dose of skepticism doesn’t hurt while reading news stories, the onus to prevent misinformation should be on political pundits and journalists rather than readers. “If we all had to research every factual claim we were exposed to, we’d do nothing else,” Nyhan says. “We have to address the supply side of misinformation, not just the demand side.”

Correcting misinformation, however, isn’t as simple as presenting people with true facts. When someone reads views from the other side, they will create counterarguments that support their initial viewpoint, bolstering their belief of the misinformation. Retracting information does not appear to be very effective either. Lewandowsky and colleagues published two papers in 2011 that showed a retraction, at best, halved the number of individuals who believed misinformation.

Combating misinformation has proved to be especially difficult in certain scientific areas such as climate science. Despite countless findings to the contrary, a large portion of the population doesn’t believe that scientists agree on the existence of human-caused climate change, which affects their willingness to seek a solution to the problem, according to a 2011 study in Nature Climate Change. (Scientific Americanis part of Nature Publishing Group.)

“Misinformation is inhibiting public engagement in climate change in a major way,” says Edward Maibach, director of the Center for Climate Change Communication at George Mason University and author of the Nature article, as well as a commentary that accompanied the recent article in PSPI by Lewandowsky and colleagues. Although virtually all climate scientists agree that human actions are changing the climate and that immediate action must be taken, roughly 60 percent of Americans believe that no scientific consensus on climate change exists.

“This is not a random event,” Maibach says. Rather, it is the result of a concerted effort by a small number of politicians and industry leaders to instill doubt in the public. They repeat the message that climate scientists don’t agree that global warming is real, is caused by people or is harmful. Thus, the message concludes, it would be premature for the government to take action and increase regulations.

To counter this effort, Maibach and others are using the same strategies employed by climate change deniers. They are gathering a group of trusted experts on climate and encouraging them to repeat simple, basic messages. It’s difficult for many scientists, who feel that such simple explanations are dumbing down the science or portraying it inaccurately. And researchers have been trained to focus on the newest research, Maibach notes, which can make it difficult to get them to restate older information. Another way to combat misinformation is to create a compelling narrative that incorporates the correct information, and focuses on the facts rather than dispelling myths—a technique called “de-biasing.”

Although campaigns to counteract misinformation can be difficult to execute, they can be remarkably effective if done correctly. A 2009 study found that an anti-prejudice campaign in Rwanda aired on the country’s radio stations successfully altered people’s perceptions of social norms and behaviors in the aftermath of the 1994 tribally based genocide of an estimated 800,000 minority Tutsi. Perhaps the most successful de-biasing campaign, Maibach notes, is the current near-universal agreement that tobacco smoking is addictive and can cause cancer. In the 1950s smoking was considered a largely safe lifestyle choice—so safe that it was allowed almost everywhere and physicians appeared in ads to promote it. The tobacco industry carried out a misinformation campaign for decades, reassuring smokers that it was okay to light up. Over time opinions began to shift as overwhelming evidence of ill effects was made public by more and more scientists and health administrators.

The most effective way to fight misinformation, ultimately, is to focus on people’s behaviors, Lewandowsky says. Changing behaviors will foster new attitudes and beliefs.