The image attempts to illustrate something that cannot be imaged — a universe of multi-dimensional structures and spaces. On the left is a digital copy of a part of the neocortex, the most evolved part of the brain. On the right are shapes of different sizes and geometries in an attempt to represent structures ranging from 1 dimension to 7 dimensions and beyond. The “black-hole” in the middle is used to symbolize a complex of multi-dimensional spaces, or cavities. Researchers at Blue Brain Project report groups of neurons bound into such cavities provide the missing link between neural structure and function, in their new study published in Frontiers in Computational Neuroscience.

For most people, it is a stretch of the imagination to understand the world in four dimensions but a new study has discovered structures in the brain with up to eleven dimensions – ground-breaking work that is beginning to reveal the brain’s deepest architectural secrets.

Using algebraic topology in a way that it has never been used before in neuroscience, a team from the Blue Brain Project has uncovered a universe of multi-dimensional geometrical structures and spaces within the networks of the brain.

The research, published in Frontiers in Computational Neuroscience, shows that these structures arise when a group of neurons forms a clique: each neuron connects to every other neuron in the group in a very specific way that generates a precise geometric object. The more neurons there are in a clique, the higher the dimension of the geometric object.

“We found a world that we had never imagined,” says neuroscientist Henry Markram, director of Blue Brain Project and professor at the EPFL in Lausanne, Switzerland, “there are tens of millions of these objects even in a small speck of the brain, up through seven dimensions. In some networks, we even found structures with up to eleven dimensions.”

Markram suggests this may explain why it has been so hard to understand the brain. “The mathematics usually applied to study networks cannot detect the high-dimensional structures and spaces that we now see clearly.”

If 4D worlds stretch our imagination, worlds with 5, 6 or more dimensions are too complex for most of us to comprehend. This is where algebraic topology comes in: a branch of mathematics that can describe systems with any number of dimensions. The mathematicians who brought algebraic topology to the study of brain networks in the Blue Brain Project were Kathryn Hess from EPFL and Ran Levi from Aberdeen University.

“Algebraic topology is like a telescope and microscope at the same time. It can zoom into networks to find hidden structures – the trees in the forest – and see the empty spaces – the clearings – all at the same time,” explains Hess.

In 2015, Blue Brain published the first digital copy of a piece of the neocortex – the most evolved part of the brain and the seat of our sensations, actions, and consciousness. In this latest research, using algebraic topology, multiple tests were performed on the virtual brain tissue to show that the multi-dimensional brain structures discovered could never be produced by chance. Experiments were then performed on real brain tissue in the Blue Brain’s wet lab in Lausanne confirming that the earlier discoveries in the virtual tissue are biologically relevant and also suggesting that the brain constantly rewires during development to build a network with as many high-dimensional structures as possible.

When the researchers presented the virtual brain tissue with a stimulus, cliques of progressively higher dimensions assembled momentarily to enclose high-dimensional holes, that the researchers refer to as cavities. “The appearance of high-dimensional cavities when the brain is processing information means that the neurons in the network react to stimuli in an extremely organized manner,” says Levi. “It is as if the brain reacts to a stimulus by building then razing a tower of multi-dimensional blocks, starting with rods (1D), then planks (2D), then cubes (3D), and then more complex geometries with 4D, 5D, etc. The progression of activity through the brain resembles a multi-dimensional sandcastle that materializes out of the sand and then disintegrates.”

The big question these researchers are asking now is whether the intricacy of tasks we can perform depends on the complexity of the multi-dimensional “sandcastles” the brain can build. Neuroscience has also been struggling to find where the brain stores its memories. “They may be ‘hiding’ in high-dimensional cavities,” Markram speculates.

By Sarah Kaplan

Imagine you are a photon, a packet of light. You are a tiny blip of energy, hurtling through the universe on your own. But you have a twin, another photon to whom you have been intimately connected since the day you were born. No matter what distance separates you, be it the width of a lab bench or the breadth of the universe, you mirror each other. Whatever happens to your twin instantaneously affects you, and vice versa. You are like the mouse siblings in “An American Tail”, wrenched apart by fate but feeling the same feelings and singing the same song beneath the same glowing moon.

This is quantum entanglement. To non-physicists it sounds about as fantastical as singing mice, and indeed, plenty of physicists have problems with the phenomenon. Albert Einstein, whose own research helped give rise to quantum theory, derisively called the concept “spooky action at a distance.” Quantum entanglement seems to break some of the bedrock rules of standard physics: that nothing can travel faster than light, that objects are only influenced by their immediate surroundings. And scientists still can’t explain how the particles are linked. Is it wormholes? An unknown dimension? The power of love? (That last one’s a joke.)

Luckily for quantum physicists, you don’t always need to explain a phenomenon in order to use it. Ancient humans didn’t know about friction before inventing the wheel; doctors in medieval China didn’t know about antibodies when they began inoculating people against smallpox 600 years ago. Not knowing what’s behind quantum entanglement didn’t stop Jian-Wei Pan, a physicist at the University of Science and Technology of China in Shanghai, from rocketing it into space.

In a new study in the journal Science, Pan and his colleagues report that they were able to produce entangled photons on a satellite orbiting 300 miles above the planet and beam the particles to two different ground-based labs that were 750 miles apart, all without losing the particles’ strange linkage. It is the first time anyone has ever generated entangled particles in space, and represents a 10-fold increase in the distance over which entanglement has been maintained.

“It’s a really stunning achievement, and I think it’s going to be the first of possibly many such interesting and exciting studies that this particular satellite will open up,” said Shohini Ghose, a physicist at Wilfrid Laurier University in Canada. “Who knows, maybe there’ll be a space entanglement race?”

There’s good a reason world governments may soon race to test out quantum theory in orbit, and it’s not just so they can claim the title of “spookiest.” Entangled particles could one day be used for “quantum communication” — a means of sending super secure messages that doesn’t rely on cables, wireless signals, or code. Because any interference with an entangled particle, even the mere act of observing it, automatically affects its partner, these missives can’t be hacked. To hear quantum physicists tell it, entangled particles could help build a “quantum internet,” give rise to new kinds of coding, and allow for faster-than-light communication — possibilities that have powerful appeal in an era where hospitals, credit card companies, government agencies, even election systems are falling victim to cyber attacks.

But until Pan and his colleagues started their experiments in space, quantum communication faced a serious limitation. Entangled photons don’t need wires or cables to link them, but on Earth it is necessary to use a fiber optic cable to transmit one of the particles to its desired location. But fibers absorb light as the photon travels through, so the quantum connection weakens with every mile the particle is transmitted. The previous distance record for what’s known as quantum teleportation, or sending information via entangled particles, was about 140 kilometers, or 86 miles.

But no light gets absorbed in space, because there’s nothing to do the absorbing. Space is empty. This means that entangled particles can be transmitted long distances across the vacuum and not lose information. Recognizing this, Pan proposed that entangled particles sent through space could vastly extend the distance across which entangled particles communicate.

On board the Chinese satellite Micius, which launched last year, a high energy laser was fired through a special kind of crystal, generating entangled photon pairs. This in itself was a feat: the process is sensitive to turbulence, and before the experiment launched scientists weren’t completely sure it would work. These photons were transmitted to ground stations in Delingha, a city on the Tibetan Plateau, and Lijiang, in China’s far southwest. The cities are about 750 miles apart — a bit farther than New York and Chicago. For comparison, the fiber optic method for quantum teleportation couldn’t get a New York photon much farther than Trenton, N.J.

Multiple tests on the ground confirmed that the particles from the Micius satellite were indeed still entangled. Now Pan wants to try even more ambitious experiments: sending quantum particles from the ground to the satellite; setting up a distribution channel that will allow for transmission of tens of thousands of entangled pairs per second. ”

“Then the satellite can really be used for quantum communication,” he said.

The Micius satellite can also be used to probe more fundamental questions, Pan added. The behavior of entangled particles in space and across vast distances offers insight into the nature of space-time and the validity of Einstein’s theory of general relativity. Plus there’s the whole issue of what is going on with these bizarre linked photons in the first place.

“Mathematically we know exactly how to describe what happens,” Ghose said. “We know how to connect, physically, these particles in the lab, and we know what to expect when we generate and manipulate and transmit them.”

But as for how it all happens, how entangled photons know what their partner is doing, “that is not part of the equation,” she continued. “That’s what makes it so mysterious and interesting.”

When someone commits suicide, their family and friends can be left with the heartbreaking and answerless question of what they could have done differently. Colin Walsh, data scientist at Vanderbilt University Medical Center, hopes his work in predicting suicide risk will give people the opportunity to ask “what can I do?” while there’s still a chance to intervene.

Walsh and his colleagues have created machine-learning algorithms that predict, with unnerving accuracy, the likelihood that a patient will attempt suicide. In trials, results have been 80-90% accurate when predicting whether someone will attempt suicide within the next two years, and 92% accurate in predicting whether someone will attempt suicide within the next week.

The prediction is based on data that’s widely available from all hospital admissions, including age, gender, zip codes, medications, and prior diagnoses. Walsh and his team gathered data on 5,167 patients from Vanderbilt University Medical Center that had been admitted with signs of self-harm or suicidal ideation. They read each of these cases to identify the 3,250 instances of suicide attempts.

This set of more than 5,000 cases was used to train the machine to identify those at risk of attempted suicide compared to those who committed self-harm but showed no evidence of suicidal intent. The researchers also built algorithms to predict attempted suicide among a group 12,695 randomly selected patients with no documented history of suicide attempts. It proved even more accurate at making suicide risk predictions within this large general population of patients admitted to the hospital.

Walsh’s paper, published in Clinical Psychological Science in April, is just the first stage of the work. He’s now working to establish whether his algorithm is effective with a completely different data set from another hospital. And, once confidant that the model is sound, Walsh hopes to work with a larger team to establish a suitable method of intervening. He expects to have an intervention program in testing within the next two years. “I’d like to think it’ll be fairly quick, but fairly quick in health care tends to be in the order of months,” he adds.

Suicide is such an intensely personal act that it seems, from a human perspective, impossible to make such accurate predictions based on a crude set of data. Walsh says it’s natural for clinicians to ask how the predictions are made, but the algorithms are so complex that it’s impossible to pull out single risk factors. “It’s a combination of risk factors that gets us the answers,” he says.

That said, Walsh and his team were surprised to note that taking melatonin seemed to be a significant factor in calculating the risk. “I don’t think melatonin is causing people to have suicidal thinking. There’s no physiology that gets us there. But one thing that’s been really important to suicide risk is sleep disorders,” says Walsh. It’s possible that prescriptions for melatonin capture the risk of sleep disorders—though that’s currently a hypothesis that’s yet to be proved.

The research raises broader ethical questions about the role of computers in health care and how truly personal information could be used. “There’s always the risk of unintended consequences,” says Walsh. “We mean well and build a system to help people, but sometimes problems can result down the line.”

Researchers will also have to decide how much computer-based decisions will determine patient care. As a practicing primary care doctor, Walsh says it’s unnerving to recognize that he could effectively follow orders from a machine. “Is there a problem with the fact that I might get a prediction of high risk when that’s not part of my clinical picture?” he says. “Are you changing the way I have to deliver care because of something a computer’s telling me to do?”

For now, the machine-learning algorithms are based on data from hospital admissions. But Walsh recognizes that many people at risk of suicide do not spend time in hospital beforehand. “So much of our lives is spent outside of the health care setting. If we only rely on data that’s present in the health care setting to do this work, then we’re only going to get part of the way there,” he says.

And where else could researchers get data? The internet is one promising option. We spend so much time on Facebook and Twitter, says Walsh, that there may well be social media data that could be used to predict suicide risk. “But we need to do the work to show that’s actually true.”

Facebook announced earlier this year that it was using its own artificial intelligence to review posts for signs of self-harm. And the results are reportedly already more accurate than the reports Facebook gets from people flagged by their friends as at-risk.

Training machines to identify warning signs of suicide is far from straightforward. And, for predictions and interventions to be done successfully, Walsh believes it’s essential to destigmatize suicide. “We’re never going to help people if we’re not comfortable talking about it,” he says.

But, with suicide leading to 800,000 deaths worldwide every year, this is a public health issue that cannot be ignored. Given that most humans, including doctors, are pretty terrible at identifying suicide risk, machine learning could provide an important solution.

by Shawn Carter, a.k.a. Jay Z

Seventeen years ago I made a song, “Guilty Until Proven Innocent.” I flipped the Latin phrase that is considered the bedrock principle of our criminal justice system, ei incumbit probatio qui dicit (the burden of proof is on the one who declares, not on one who denies). If you’re from neighborhoods like the Brooklyn one I grew up in, if you’re unable to afford a private attorney, then you can be disappeared into our jail system simply because you can’t afford bail. Millions of people are separated from their families for months at a time — not because they are convicted of committing a crime, but because they are accused of committing a crime.

Scholars like Ruthie Gilmore, filmmakers like Ava Duvernay, and formerly incarcerated people like Glenn Martin have all done work to expose the many injustices of the industry of our prison system. Gilmore’s pioneering book, The Golden Gulag, Duvernay’s documentary 13th and Martin’s campaign to close Rikers focus on the socioeconomic, constitutional and racially driven practices and polices that make the U.S. the most incarcerated nation in the world.

But when I helped produce this year’s docuseries, Time: The Kalief Browder Story, I became obsessed with the injustice of the profitable bail bond industry. Kalief’s family was too poor to post bond when he was accused of stealing a backpack. He was sentenced to a kind of purgatory before he ever went to trial. The three years he spent in solitary confinement on Rikers ultimately created irreversible damage that lead to his death at 22.

Sandra Bland was also forced to post bail after her minor traffic infraction in Prairie View, Texas, led to a false charge of assaulting a public servant (the officer who arrested her was later charged with perjury regarding the arrest). She was placed in a local jail in a pre-incarcerated state. Again, she was never convicted of a crime. On any given day over 400,000 people, convicted of no crime, are held in jail because they cannot afford to buy their freedom.

When black and brown people are over-policed and arrested and accused of crimes at higher rates than others, and then forced to pay for their freedom before they ever see trial, big bail companies prosper. This pre-incarceration conundrum is devastating to families. One in 9 black children has an incarcerated parent. Families are forced to take on more debt, often in predatory lending schemes created by bail bond insurers. Or their loved ones linger in jails, sometimes for months—a consequence of nationwide backlogs.

Every year $9 billion dollars are wasted incarcerating people who’ve not been convicted of a crime, and insurance companies, who have taken over our bail system, go to the bank. Last month for Mother’s Day, organizations like Southerners on New Ground and Color of Change did a major fundraising drive to bail out 100 mothers for Mother’s Day. Color of Change’s exposè on the for-profit bail industry provides deeper strategy behind this smart and inspiring action. This Father’s Day, I’m supporting those same organizations to bail out fathers who can’t afford the due process our democracy promises. As a father with a growing family, it’s the least I can do, but philanthropy is not a long fix, we have to get rid of these inhumane practices altogether. We can’t fix our broken criminal justice system until we take on the exploitative bail industry.

A long-lost Jackson Pollock painting once owned by a New York City socialite — and worth up to $15 million — was discovered in a dusty Arizona garage, according to a report Tuesday.

The splattered abstract art, which hits the auction block this week, was unearthed in January 2016, when retiree Gordon Cosgriff called an appraiser to his Scottsdale home.

Cosgriff hired the appraiser, Josh Levine, to size up how much a signed L.A. Lakers basketball poster was worth, according to the news site.

But an orange and green painting — featuring Pollock’s signature splatter — caught his eye under a pile of art, he said.

“As we’re going through the stack and we’re down to this last piece … I was like, ‘God, that looks like a Jackson Pollock,” Levine said.

Arizona is generally home to traditional southwest paintings, not big name New York City modern art, but it looked legit.

Levine then launched a borderline obsessive hunt — and even hired a private investigator — to prove it was the real thing.

Levine traced the owner’s history and learned that his late sister, Jenifer Gordon Cosgriff, once lived in the Big Apple in the 1950s. As the “black sheep” of her Midwestern family, she hobnobbed with provocative artists.

Her friends included writer Clement Greenberg, modern artist Hazel Guggenheim McKinley — and Jackson Pollock.

Levine forked over tens of thousands of dollars to authenticate the piece and to prove Gordon Cosgriff’s was at a Pollock art showing. And he hired experts to investigate the style and chemical make-up of the paint.

“All I was interested in was, was it executed before Jackson Pollock was dead, before 1956?” Levine said.

Experts soon confirmed it was one of Pollock’s missing “gouaches” — a style in which he used paint, water and a binding agent between 1945 and 1949.

Levine was thrilled.

“I actually felt weightless,” he said. “I was actually kind of worried I was having a panic attack or something.”

The painting, which faded and slightly damaged, needs to be restored at a price of $50,000, he said.

The piece will be auctioned off on June 20. Levine estimated it will sell for between $5 and $15 million.

By contrast, the Lakers poster he was at first called to appraise was valued at just $300.

By Leah Crane

HIDDEN dimensions could cause ripples through reality by modifying gravitational waves – and spotting such signatures of extra dimensions could help solve some of the biggest mysteries of the universe.

Physicists have long wondered why gravity is so weak compared with the other fundamental forces. This may be because some of it is leaking away into extra dimensions beyond the three spatial dimensions we experience.

Some theories that seek to explain how gravity and quantum effects mesh together, including string theory, require extra dimensions, often with gravity propagating through them. Finding evidence of such exotic dimensions could therefore help to characterise gravity, or find a way to unite gravity and quantum mechanics – it could also hint at an explanation for why the universe’s expansion is accelerating.

But detecting extra dimensions is a challenge. Any that exist would have to be very small in order to avoid obvious effects on our everyday lives. Hopes were high (and still are) that they would show up at the Large Hadron Collider, but it has yet to see any sign of physics beyond our four dimensions.

In the last two years, though, a new hope has emerged. Gravitational waves, ripples in space-time caused by the motion of massive objects, were detected for the first time in 2015. Since gravity is likely to occupy all the dimensions that exist, its waves are an especially promising way to detect any dimensions beyond the ones we know.

“If there are extra dimensions in the universe, then gravitational waves can walk along any dimension, even the extra dimensions,” says Gustavo Lucena Gómez at the Max Planck Institute for Gravitational Physics in Potsdam, Germany.

Lucena Gómez and his colleague David Andriot set out to calculate how potential extra dimensions would affect the gravitational waves that we are able to observe. They found two peculiar effects: extra waves at high frequencies, and a modification of how gravitational waves stretch space.

As gravitational waves propagate through a tiny extra dimension, the team found, they should generate a “tower” of extra gravitational waves with high frequencies following a regular distribution.

But current observatories cannot detect frequencies that high, and most of the planned observatories also focus on lower frequencies. So while these extra waves may be everywhere, they will be hard to spot.

The second effect of extra dimensions might be more detectable, since it modifies the “normal” gravitational waves that we observe rather than adding an extra signal.

“If extra dimensions are in our universe, this would stretch or shrink space-time in a different way that standard gravitational waves would never do,” says Lucena Gómez.

As gravitational waves ripple through the universe, they stretch and squish space in a very specific way. It’s like pulling on a rubber band: the ellipse formed by the band gets longer in one direction and shorter in the other, and then goes back to its original shape when you release it.

But extra dimensions add another way for gravitational waves to make space shape-shift, called a breathing mode. Like your lungs as you breathe, space expands and contracts as gravitational waves pass through, in addition to stretching and squishing.

“With more detectors we will be able to see whether this breathing mode is happening,” says Lucena Gómez.

“Extra dimensions have been discussed for a long time from different points of view,” says Emilian Dudas at the École Polytechnique in France. “Gravitational waves could be a new twist on looking for extra dimensions.”

But there is a trade-off: while detecting a tower of high-frequency gravitational waves would point fairly conclusively to extra dimensions, a breathing mode could be explained by a number of other non-standard theories of gravity.

“It’s probably not a unique signature,” says Dudas. “But it would be a very exciting thing.”

A “faceless” deep-sea fish not seen for more than a century has been rediscovered by scientists trawling the depths of a massive abyss off Australia’s east coast, along with “amazing” quantities of rubbish.

The 40cm fish was rediscovered 4km below sea level in waters south of Sydney by scientists from Museums Victoria and the Australian government’s Commonwealth Scientific and Industrial Research Organisation (CSIRO) on the weekend.

Dr Tim O’Hara, the chief scientist and expedition leader, who is a senior curator of marine invertebrates at Museums Victoria, said it was the first time the fish had been seen in waters off Australia since 1873, when one was dredged up by a British ship near Papua New Guinea.

“This little fish looks amazing because the mouth is actually situated at the bottom of the animal so, when you look side-on, you can’t see any eyes, you can’t see any nose or gills or mouth,” O’Hara said via satellite phone from the research vessel Investigator on Wednesday. “It looks like two rear-ends on a fish, really.”

The world-first survey of commonwealth marine reserves stretching from northern Tasmania to central Queensland began on 15 May. On board the Investigator research vessel for the month-long voyage are 27 scientists, 13 technicians and 20 crew.

Samples of animals and sediment have been collected from the bottom of the abyss each day by a metal sled-style device attached to 8km of thick wire. A video camera has also been trailed behind the ship to capture footage from the depths.

Finds have included bright red spiky rock crabs, spectacular bioluminescent sea stars and gigantic sea spiders as big as a dinner plate.

“The experts tell me that about a third of all specimens coming on board are new totally new to science,” O’Hara said. “They aren’t all as spectacular as the faceless fish but there’s a lot of sea fleas and worms and crabs and other things that are totally new and no one has seen them ever before.”

Di Bray of Museums Victoria told the ABC that the rediscovery of the faceless fish was a highlight of the “awesome stuff” thrown up by the study so far.

“On the video camera we saw a kind of chimaera that whizzed by – that’s very, very rare in Australian waters,” she said. “We’ve seen a fish with photosensitive plates that sit on the top of its head, tripod fish that sit up on their fins and face into the current.”

“A lot” of the species found would prove to be previously undiscovered, she predicted.

“We’re not even scratching the surface of what we know about our abyssal plain fishes.”

Equally “amazing”, O’Hara said, was the quantity of rubbish that researchers had dredged up.

“There’s a lot of debris, even from the old steam ship days when coal was tossed overboard,” he said. “We’ve seen PVC pipes and we’ve trawled up cans of paints.

“It’s quite amazing. We’re in the middle of nowhere and still the sea floor has 200 years of rubbish on it.”

In February, scientists reported “extraordinary” levels of toxic pollution in the 10km-deep Mariana trench, one of the most remote and inaccessible places on the planet.

Data from the survey of the eastern abyss would allow scientists to collect baseline data about its biodiversity and would likely be used to measure the impacts of climate change in the coming decades.

The research voyage is due to conclude on 16 June.