Archive for the ‘Inventions’ Category

sanger

By DENISE GELLENE

Frederick Sanger, a British biochemist whose discoveries about the chemistry of life led to the decoding of the human genome and to the development of new drugs like human growth hormone and earned him two Nobel Prizes, a distinction held by only three other scientists, died on Tuesday in Cambridge, England. He was 95.

His death was confirmed by Adrian Penrose, communications manager at the Medical Research Council in Cambridge. Dr. Sanger, who died at Addenbrooke’s Hospital in Cambridge, had lived in a nearby village called Swaffham Bulbeck.

Dr. Sanger won his first Nobel Prize, in chemistry, in 1958 for showing how amino acids link together to form insulin, a discovery that gave scientists the tools to analyze any protein in the body.

In 1980 he received his second Nobel, also in chemistry, for inventing a method of “reading” the molecular letters that make up the genetic code. This discovery was crucial to the development of biotechnology drugs and provided the basic tool kit for decoding the entire human genome two decades later.

Dr. Sanger spent his entire career working in a laboratory, which is unusual for someone of his stature. Long after receiving his first Nobel, he continued to perform many experiments himself instead of assigning them to a junior researcher, as is typical in modern science labs. But Dr. Sanger said he was not particularly adept at coming up with experiments for others to do, and had little aptitude for administration or teaching.

“I was in a position to do more or less what I liked, and that was doing research,” he said.

Frederick Sanger was born on Aug. 3, 1918, in Rendcomb, England, where his father was a physician. He expected to follow his father into medicine, but after studying biochemistry at Cambridge University, he decided to become a scientist. His father, he said in a 1988 interview, “led a scrappy sort of life” in which he was “always going from one patient to another.”

“I felt I would be much more interested in and much better at something where I could really work on a problem,” he said.

He received his bachelor’s degree in 1939. Raised as a Quaker, he was a conscientious objector during World War II and remained at Cambridge to work on his doctorate, which he received in 1943.

However, later in life, lacking hard evidence to support his religious beliefs, he became an agnostic.

“In science, you have to be so careful about truth,” he said. “You are studying truth and have to prove everything. I found that it was difficult to believe all the things associated with religion.”

Dr. Sanger stayed on at Cambridge and soon became immersed in the study of proteins. When he started his work, scientists knew that proteins were chains of amino acids, fitted together like a child’s colorful snap-bead toy. But there are 22 different amino acids, and scientists had no way of determining the sequence of these amino acid “beads” along the chains.
In 1962, Dr. Sanger moved to the British Medical Research Council Laboratory of Molecular Biology, where he was surrounded by scientists studying deoxyribonucleic acid, or DNA, the master chemical of heredity.

Scientists knew that DNA, like proteins, had a chainlike structure. The challenge was to determine the order of adenine, thymine, guanine and cytosine — the chemical bases from which DNA is made. These bases, which are represented by the letters A, T, G and C, spell out the genetic code for all living things.

Dr. Sanger decided to study insulin, a protein that was readily available in a purified form since it is used to treat diabetes. His choice of insulin turned out to be a lucky one — with 51 amino acids, insulin has a relatively simple structure. Nonetheless, it took him 10 years to unlock its chemical sequence.

His approach, which he called the “jigsaw puzzle method,” involved breaking insulin into manageable chunks for analysis and then using his knowledge of chemical bonds to fit the pieces back together. Using this technique, scientists went on to determine the sequences of other proteins. Dr. Sanger received the Nobel just four years after he published his results in 1954.

Dr. Sanger quickly discovered that his jigsaw method was too cumbersome for large pieces of DNA, which contain many thousands of letters. “For a while I didn’t see any hope of doing it, though I knew it was an important problem,” he said.

But he persisted, developing a more efficient approach that allowed stretches of 500 to 800 letters to be read at a time. His technique, known as the Sanger method, increased by a thousand times the rate at which scientists could sequence DNA.

In 1977, Dr. Sanger decoded the complete genome of a virus that had more than 5,000 letters. It was the first time the DNA of an entire organism had been sequenced. He went on to decode the 16,000 letters of mitochondria, the energy factories in cells.

Because the Sanger method lends itself to computer automation, it has allowed scientists to unravel ever more complicated genomes — including, in 2003, the three billion letters of the human genetic code, giving scientists greater ability to distinguish between normal and abnormal genes.

In addition, Dr. Sanger’s discoveries were critical to the development of biotechnology drugs, like human growth hormone and clotting factors for hemophilia, which are produced by tiny, genetically modified organisms.

Dr. Sanger shared the 1980 chemistry Nobel with two other scientists: Paul Berg, who determined how to transfer genetic material from one organism to another, and Walter Gilbert, who, independently of Dr. Sanger, also developed a technique to sequence DNA. Because of its relative simplicity, the Sanger method became the dominant approach.

Other scientists who have received two Nobels are John Bardeen for physics (1956 and 1972), Marie Curie for physics (1903) and chemistry (1911), and Linus Pauling for chemistry (1954) and peace (1962).

Dr. Sanger received the Albert Lasker Basic Medical Research Award, often a forerunner to the Nobel, in 1979 for his work on DNA. He retired from the British Medical Research Council in 1983.

Survivors include two sons, Robin and Peter, and a daughter, Sally.

In a 2001 interview, Dr. Sanger spoke about the challenge of winning two Nobel Prizes.

“It’s much more difficult to get the first prize than to get the second one,” he said, “because if you’ve already got a prize, then you can get facilities for work and you can get collaborators, and everything is much easier.”

http://www.nytimes.com/2013/11/21/us/frederick-sanger-two-time-nobel-winning-scientist-dies-at-95.html?pagewanted=2&_r=1&hp

ucla-transparent-solar-windows-537x373

A team from UCLA has developed a new transparent solar cell that has the ability to generate electricity while still allowing people to see outside. In short, they’ve created a solar power-generating window! Described as “a new kind of polymer solar cell (PSC)” that produces energy by absorbing mainly infrared light instead of traditional visible light, the photoactive plastic cell is nearly 70% transparent to the human eye—so you can look through it like a traditional window.

“These results open the potential for visibly transparent polymer solar cells as add-on components of portable electronics, smart windows and building-integrated photovoltaics and in other applications,” said study leader Yang Yang, a UCLA professor of materials science and engineering and also director of the Nano Renewable Energy Center at California NanoSystems Institute (CNSI). “Our new PSCs are made from plastic-like materials and are lightweight and flexible. More importantly, they can be produced in high volume at low cost.”

There are also other advantages to polymer solar cells over more traditional solar cell technologies, such as building-integrated photovoltaics and integrated PV chargers for portable electronics. In the past, visibly transparent or semitransparent PSCs have suffered low visible light transparency and/or low device efficiency because suitable polymeric PV materials and efficient transparent conductors were not well deployed in device design and fabrication. However that was something the UCLA team wished to address.

By using high-performance, solution-processed, visibly transparent polymer solar cells and incorporating near-infrared light-sensitive polymer and silver nanowire composite films as the top transparent electrode, the UCLA team found that the near-infrared photoactive polymer absorbed more near-infrared light but was less sensitive to visible light. This, in essence, created a perfect balance between solar cell performance and transparency in the visible wavelength region.

http://inhabitat.com/ucla-develop-electricity-generating-transparent-solar-cell-windows/

Thanks to Jody Troupe for bringing this to the attention of the It’s Interesting community.

intelscience_610x427
Top winner Ionut Budisteanu, 19, of Romania (center) with second-place winners Eesha Khare, 18, of Saratoga, Calif., (left) and Henry Lin, 17, of Shreveport, La., celebrate their awards at the Intel International Science and Engineering Fair.

Khare, an 18-year-old from California, won the Intel Foundation Young Scientist Award and $50,000 for her participation in the Intel International Science and Engineering Fair run by the Society for Science & the Public. Think of it as the world’s largest science fair. Khare took home one of the top prizes for “a tiny device that fits inside cell phone batteries, allowing them to fully charge within 20-30 seconds.”

The official title of Khare’s project is “Design and Synthesis of Hydrogenated TiO2-Polyaniline Nanorods for Flexible High-Performance Supercapacitors.” Her objective reads:

With the rapid growth of portable electronics, it has become necessary to develop efficient energy-storage technology to match this development. While batteries are currently used for energy-storage, they suffer from long charging times and short cycle life. Electrochemical supercapacitors have attracted attention as energy-storage devices because they bridge the gap between current alternatives of conventional capacitors and batteries, offering higher energy density than conventional capacitors and higher power density than batteries. Despite these advantages, supercapacitor energy density is much lower than batteries and increasing energy density remains a key challenge in supercapacitor research. The goal of this work was to design and synthesize a supercapacitor with increased energy density while maintaining power density and long cycle life.

Khare’s supercapacitor can last for 10,000 charge and recharge cycles. She has used it to power an LED as a proof of concept, but envisions its future use in phones, portable electronic devices, and even car batteries.

Curious about how she did it? Put your science hat on. “To improve supercapacitor energy density, I designed, synthesized, and characterized a novel core-shell nanorod electrode with hydrogenated TiO2 (H-TiO2) core and polyaniline shell,” she writes. Essentially, that translates to a much improved supercapacitor.

The 1,600 participants were whittled down to 3 top winners. Besides Khare, Romanian student Ionut Budisteanu came in first by using artificial intelligence to create a model for a low-cost, self-driving car. Henry Lin, a 17-year-old from Louisiana, received the same award as Khare for his project that simulated thousands of clusters of galaxies.

http://news.cnet.com/8301-17938_105-57585337-1/teens-science-project-could-charge-phones-in-20-seconds/

130507101540-brain-implants-human-horizontal-gallery

William Gibson’s popular science fiction tale “Johnny Mnemonic” foresaw sensitive information being carried by microchips in the brain by 2021. A team of American neuroscientists could be making this fantasy world a reality. Their motivation is different but the outcome would be somewhat similar. Hailed as one of 2013’s top ten technological breakthroughs by MIT, the work by the University of Southern California, North Carolina’s Wake Forest University and other partners has actually spanned a decade.

But the U.S.-wide team now thinks that it will see a memory device being implanted in a small number of human volunteers within two years and available to patients in five to 10 years. They can’t quite contain their excitement. “I never thought I’d see this in my lifetime,” said Ted Berger, professor of biomedical engineering at the University of Southern California in Los Angeles. “I might not benefit from it myself but my kids will.”

Rob Hampson, associate professor of physiology and pharmacology at Wake Forest University, agrees. “We keep pushing forward, every time I put an estimate on it, it gets shorter and shorter.”

The scientists — who bring varied skills to the table, including mathematical modeling and psychiatry — believe they have cracked how long-term memories are made, stored and retrieved and how to replicate this process in brains that are damaged, particularly by stroke or localized injury.

Berger said they record a memory being made, in an undamaged area of the brain, then use that data to predict what a damaged area “downstream” should be doing. Electrodes are then used to stimulate the damaged area to replicate the action of the undamaged cells.

They concentrate on the hippocampus — part of the cerebral cortex which sits deep in the brain — where short-term memories become long-term ones. Berger has looked at how electrical signals travel through neurons there to form those long-term memories and has used his expertise in mathematical modeling to mimic these movements using electronics.

Hampson, whose university has done much of the animal studies, adds: “We support and reinforce the signal in the hippocampus but we are moving forward with the idea that if you can study enough of the inputs and outputs to replace the function of the hippocampus, you can bypass the hippocampus.”

The team’s experiments on rats and monkeys have shown that certain brain functions can be replaced with signals via electrodes. You would think that the work of then creating an implant for people and getting such a thing approved would be a Herculean task, but think again.

For 15 years, people have been having brain implants to provide deep brain stimulation to treat epilepsy and Parkinson’s disease — a reported 80,000 people have now had such devices placed in their brains. So many of the hurdles have already been overcome — particularly the “yuck factor” and the fear factor.

“It’s now commonly accepted that humans will have electrodes put in them — it’s done for epilepsy, deep brain stimulation, (that has made it) easier for investigative research, it’s much more acceptable now than five to 10 years ago,” Hampson says.

Much of the work that remains now is in shrinking down the electronics.

“Right now it’s not a device, it’s a fair amount of equipment,”Hampson says. “We’re probably looking at devices in the five to 10 year range for human patients.”

The ultimate goal in memory research would be to treat Alzheimer’s Disease but unlike in stroke or localized brain injury, Alzheimer’s tends to affect many parts of the brain, especially in its later stages, making these implants a less likely option any time soon.

Berger foresees a future, however, where drugs and implants could be used together to treat early dementia. Drugs could be used to enhance the action of cells that surround the most damaged areas, and the team’s memory implant could be used to replace a lot of the lost cells in the center of the damaged area. “I think the best strategy is going to involve both drugs and devices,” he says.

Unfortunately, the team found that its method can’t help patients with advanced dementia.

“When looking at a patient with mild memory loss, there’s probably enough residual signal to work with, but not when there’s significant memory loss,” Hampson said.

Constantine Lyketsos, professor of psychiatry and behavioral sciences at John Hopkins Medicine in Baltimore which is trialing a deep brain stimulator implant for Alzheimer’s patients was a little skeptical of the other team’s claims.

“The brain has a lot of redundancy, it can function pretty well if loses one or two parts. But memory involves circuits diffusely dispersed throughout the brain so it’s hard to envision.” However, he added that it was more likely to be successful in helping victims of stroke or localized brain injury as indeed its makers are aiming to do.

The UK’s Alzheimer’s Society is cautiously optimistic.

“Finding ways to combat symptoms caused by changes in the brain is an ongoing battle for researchers. An implant like this one is an interesting avenue to explore,” said Doug Brown, director of research and development.

Hampson says the team’s breakthrough is “like the difference between a cane, to help you walk, and a prosthetic limb — it’s two different approaches.”

It will still take time for many people to accept their findings and their claims, he says, but they don’t expect to have a shortage of volunteers stepping forward to try their implant — the project is partly funded by the U.S. military which is looking for help with battlefield injuries.

There are U.S. soldiers coming back from operations with brain trauma and a neurologist at DARPA (the Defense Advanced Research Projects Agency) is asking “what can you do for my boys?” Hampson says.

“That’s what it’s all about.”

http://www.cnn.com/2013/05/07/tech/brain-memory-implants-humans/index.html?iref=allsearch

A Feb. 21, 2013 article in Rewire reports on a breakthrough in power storage that hold the promise to change the world. Researchers at UCLA have found a way to create what is in effect a super capacitor that can be charged quickly and will hold more electricity than standard batteries. What’s more, it is made with Graphene, a simply carbon polymer that, unlike batteries that have toxic metals in them, is environmentally benign and is not only biodegradable but compostable.

The researchers expect that the manufacturing process for the Graphene super capacitor can be refined for mass production.

The real world applications of an energy storage device that can be charged quickly and can hold as much if not more electricity as batteries is mind blowing.

For instance, electronic devices such as cell phones and tablet computers can be charged in seconds and not for hours and would hold a charge for longer than devices with standard batteries. This will diminish those annoying instances when one’s device suddenly goes dead for lack of energy.

Eventually the technology can be scaled up for electric cars or storage devices for wind turbines and solar collectors. Currently it takes hours to charge up an electric car. Such vehicles would become more viable if one can “refuel” them as quickly as one can a gasoline powered car.

This is all predicated on the notion that the technology lives up to its promise and doesn’t have a flaw, as yet uncovered, that will undermine it. In the meantime the UCLA researchers are looking for an industrial partner to build their super capacitor units on an industrial scale.

http://www.examiner.com/article/graphene-super-capacitor-could-make-batteries-obsolete

_65888650_65886269

Duke University researchers have effectively given laboratory rats a “sixth sense” using an implant in their brains.

An experimental device allowed the rats to “touch” infrared light – which is normally invisible to them.

The team at Duke University fitted the rats with an infrared detector wired up to microscopic electrodes that were implanted in the part of their brains that processes tactile information.

The results of the study were published in Nature Communications journal.

The researchers say that, in theory at least, a human with a damaged visual cortex might be able to regain sight through a device implanted in another part of the brain.

Lead author Miguel Nicolelis said this was the first time a brain-machine interface has augmented a sense in adult animals.

The experiment also shows that a new sensory input can be interpreted by a region of the brain that normally does something else (without having to “hijack” the function of that brain region).

“We could create devices sensitive to any physical energy,” said Prof Nicolelis, from the Duke University Medical Center in Durham, North Carolina.

“It could be magnetic fields, radio waves, or ultrasound. We chose infrared initially because it didn’t interfere with our electrophysiological recordings.”

His colleague Eric Thomson commented: “The philosophy of the field of brain-machine interfaces has until now been to attempt to restore a motor function lost to lesion or damage of the central nervous system.

“This is the first paper in which a neuroprosthetic device was used to augment function – literally enabling a normal animal to acquire a sixth sense.”
In their experiments, the researchers used a test chamber with three light sources that could be switched on randomly.

They taught the rats to choose the active light source by poking their noses into a port to receive a sip of water as a reward. They then implanted the microelectrodes, each about a tenth the diameter of a human hair, into the animals’ brains. These electrodes were attached to the infrared detectors.

The scientists then returned the animals to the test chamber. At first, the rats scratched at their faces, indicating that they were interpreting the lights as touch. But after a month the animals learned to associate the signal in their brains with the infrared source.

They began to search actively for the signal, eventually achieving perfect scores in tracking and identifying the correct location of the invisible light source.

One key finding was that enlisting the touch cortex to detect infrared light did not reduce its ability to process touch signals.

http://www.bbc.co.uk/news/science-environment-21459745

Thanks to Kebmodee for bringing this to the attention of the It’s Interesting community.

nextgov-medium

In a proposal almost as fanciful as the fictional 20,000 Leagues Under the Sea by Jules Verne, the Defense Advanced Research Projects Agency kicked off a research project last Friday to develop sensor systems that could be placed miles below the surface of the ocean and activated when needed by a remote command.

DARPA said it wants to develop a system that can store unmanned sensors such as waterborne or airborne cameras, decoys, network nodes, beacons and jammers, in watertight capsules that can withstand pressure at depths up to six kilometers (3.7 miles) and then be launched to the surface “after years of dormancy.”

Nearly half of the world’s oceans have depths deeper than 4 kilometers (2.5 miles), DARPA said, “which provides a “vast area for concealment of storage” and this concealment “also provides opportunity to surprise maritime targets from below, while its vastness provides opportunity to simultaneously operate across great distance,” DARPA said.

The agency said it envisions the subsystems of its Upward Falling Payloads projects will consist of a sensor payload, a “riser” providing pressure tolerant encapsulation of the payload and a communication system triggering launch of the payload stored on a container with an inner, 4-7/8 inch diameter and a length of 36 inches.

In the first stage of the three-phase project expected to cost no more than $1.75 million, DARPA wants researchers to concentrate on a communications system that avoids “false triggers” of the deep-sea systems and can operate at long distances from the submerged sensors. Proposals for this phase also should detail the design of a capsule and riser system that will work after sitting for years on the seabed, and potential sensor systems for military or humanitarian use.

The second phase of the project calls for the communication system to “wake up” the system on the seabed and launch it, with tests planned the Western Pacific in 2015 and 2016,though tests also could be conducted in the Atlantic or offshore from Hawaii, DARPA said.

In the third phase, planned for 2017, DARPA plans tests of a completely integrated and distributed Upward Falling Payloads system at full depth in the Western Pacific.

Proposals are due March 12 and DARPA expects to make an award in June.

http://www.nextgov.com/defense/2013/01/darpa-eyes-pop-deep-sea-sensors/60655/

Thanks to Kebmodee for bringing this to the attention of the It’s Interesting community.