Archive for the ‘Nobel Prize’ Category

2013nobelmedicinewinners

Randy Schekman says his lab will no longer send papers to Nature, Cell and Science as they distort scientific process.

Leading academic journals are distorting the scientific process and represent a “tyranny” that must be broken, according to a Nobel prize winner who has declared a boycott on the publications.

Randy Schekman, a US biologist who won the Nobel prize in physiology or medicine this year and receives his prize in Stockholm on Tuesday, said his lab would no longer send research papers to the top-tier journals, Nature, Cell and Science.

Schekman said pressure to publish in “luxury” journals encouraged researchers to cut corners and pursue trendy fields of science instead of doing more important work. The problem was exacerbated, he said, by editors who were not active scientists but professionals who favoured studies that were likely to make a splash.

The prestige of appearing in the major journals has led the Chinese Academy of Sciences to pay successful authors the equivalent of $30,000 (£18,000). Some researchers made half of their income through such “bribes”, Schekman said in an interview.

Writing in the Guardian, Schekman raises serious concerns over the journals’ practices and calls on others in the scientific community to take action.

“I have published in the big brands, including papers that won me a Nobel prize. But no longer,” he writes. “Just as Wall Street needs to break the hold of bonus culture, so science must break the tyranny of the luxury journals.”

Schekman is the editor of eLife, an online journal set up by the Wellcome Trust. Articles submitted to the journal – a competitor to Nature, Cell and Science – are discussed by reviewers who are working scientists and accepted if all agree. The papers are free for anyone to read.

Schekman criticises Nature, Cell and Science for artificially restricting the number of papers they accept, a policy he says stokes demand “like fashion designers who create limited-edition handbags.” He also attacks a widespread metric called an “impact factor”, used by many top-tier journals in their marketing.

A journal’s impact factor is a measure of how often its papers are cited, and is used as a proxy for quality. But Schekman said it was “toxic influence” on science that “introduced a distortion”. He writes: “A paper can become highly cited because it is good science – or because it is eye-catching, provocative, or wrong.”

Daniel Sirkis, a postdoc in Schekman’s lab, said many scientists wasted a lot of time trying to get their work into Cell, Science and Nature. “It’s true I could have a harder time getting my foot in the door of certain elite institutions without papers in these journals during my postdoc, but I don’t think I’d want to do science at a place that had this as one of their most important criteria for hiring anyway,” he told the Guardian.

Sebastian Springer, a biochemist at Jacobs University in Bremen, who worked with Schekman at the University of California, Berkeley, said he agreed there were major problems in scientific publishing, but no better model yet existed. “The system is not meritocratic. You don’t necessarily see the best papers published in those journals. The editors are not professional scientists, they are journalists which isn’t necessarily the greatest problem, but they emphasise novelty over solid work,” he said.

Springer said it was not enough for individual scientists to take a stand. Scientists are hired and awarded grants and fellowships on the basis of which journals they publish in. “The hiring committees all around the world need to acknowledge this issue,” he said.

Philip Campbell, editor-in-chief at Nature, said the journal had worked with the scientific community for more than 140 years and the support it had from authors and reviewers was validation that it served their needs.

“We select research for publication in Nature on the basis of scientific significance. That in turn may lead to citation impact and media coverage, but Nature editors aren’t driven by those considerations, and couldn’t predict them even if they wished to do so,” he said.

“The research community tends towards an over-reliance in assessing research by the journal in which it appears, or the impact factor of that journal. In a survey Nature Publishing Group conducted this year of over 20,000 scientists, the three most important factors in choosing a journal to submit to were: the reputation of the journal; the relevance of the journal content to their discipline; and the journal’s impact factor. My colleagues and I have expressed concerns about over-reliance on impact factors many times over the years, both in the pages of Nature and elsewhere.”

Monica Bradford, executive editor at Science, said: “We have a large circulation and printing additional papers has a real economic cost … Our editorial staff is dedicated to ensuring a thorough and professional peer review upon which they determine which papers to select for inclusion in our journal. There is nothing artificial about the acceptance rate. It reflects the scope and mission of our journal.”

Emilie Marcus, editor of Cell, said: “Since its launch nearly 40 years ago, Cell has focused on providing strong editorial vision, best-in-class author service with informed and responsive professional editors, rapid and rigorous peer-review from leading academic researchers, and sophisticated production quality. Cell’s raison d’etre is to serve science and scientists and if we fail to offer value for both our authors and readers, the journal will not flourish; for us doing so is a founding principle, not a luxury.”

http://www.theguardian.com/science/2013/dec/09/nobel-winner-boycott-science-journals?CMP=twt_fd

Thanks to Kebmodee for bringing this to the attention of the It’s Interesting community.

sanger

By DENISE GELLENE

Frederick Sanger, a British biochemist whose discoveries about the chemistry of life led to the decoding of the human genome and to the development of new drugs like human growth hormone and earned him two Nobel Prizes, a distinction held by only three other scientists, died on Tuesday in Cambridge, England. He was 95.

His death was confirmed by Adrian Penrose, communications manager at the Medical Research Council in Cambridge. Dr. Sanger, who died at Addenbrooke’s Hospital in Cambridge, had lived in a nearby village called Swaffham Bulbeck.

Dr. Sanger won his first Nobel Prize, in chemistry, in 1958 for showing how amino acids link together to form insulin, a discovery that gave scientists the tools to analyze any protein in the body.

In 1980 he received his second Nobel, also in chemistry, for inventing a method of “reading” the molecular letters that make up the genetic code. This discovery was crucial to the development of biotechnology drugs and provided the basic tool kit for decoding the entire human genome two decades later.

Dr. Sanger spent his entire career working in a laboratory, which is unusual for someone of his stature. Long after receiving his first Nobel, he continued to perform many experiments himself instead of assigning them to a junior researcher, as is typical in modern science labs. But Dr. Sanger said he was not particularly adept at coming up with experiments for others to do, and had little aptitude for administration or teaching.

“I was in a position to do more or less what I liked, and that was doing research,” he said.

Frederick Sanger was born on Aug. 3, 1918, in Rendcomb, England, where his father was a physician. He expected to follow his father into medicine, but after studying biochemistry at Cambridge University, he decided to become a scientist. His father, he said in a 1988 interview, “led a scrappy sort of life” in which he was “always going from one patient to another.”

“I felt I would be much more interested in and much better at something where I could really work on a problem,” he said.

He received his bachelor’s degree in 1939. Raised as a Quaker, he was a conscientious objector during World War II and remained at Cambridge to work on his doctorate, which he received in 1943.

However, later in life, lacking hard evidence to support his religious beliefs, he became an agnostic.

“In science, you have to be so careful about truth,” he said. “You are studying truth and have to prove everything. I found that it was difficult to believe all the things associated with religion.”

Dr. Sanger stayed on at Cambridge and soon became immersed in the study of proteins. When he started his work, scientists knew that proteins were chains of amino acids, fitted together like a child’s colorful snap-bead toy. But there are 22 different amino acids, and scientists had no way of determining the sequence of these amino acid “beads” along the chains.
In 1962, Dr. Sanger moved to the British Medical Research Council Laboratory of Molecular Biology, where he was surrounded by scientists studying deoxyribonucleic acid, or DNA, the master chemical of heredity.

Scientists knew that DNA, like proteins, had a chainlike structure. The challenge was to determine the order of adenine, thymine, guanine and cytosine — the chemical bases from which DNA is made. These bases, which are represented by the letters A, T, G and C, spell out the genetic code for all living things.

Dr. Sanger decided to study insulin, a protein that was readily available in a purified form since it is used to treat diabetes. His choice of insulin turned out to be a lucky one — with 51 amino acids, insulin has a relatively simple structure. Nonetheless, it took him 10 years to unlock its chemical sequence.

His approach, which he called the “jigsaw puzzle method,” involved breaking insulin into manageable chunks for analysis and then using his knowledge of chemical bonds to fit the pieces back together. Using this technique, scientists went on to determine the sequences of other proteins. Dr. Sanger received the Nobel just four years after he published his results in 1954.

Dr. Sanger quickly discovered that his jigsaw method was too cumbersome for large pieces of DNA, which contain many thousands of letters. “For a while I didn’t see any hope of doing it, though I knew it was an important problem,” he said.

But he persisted, developing a more efficient approach that allowed stretches of 500 to 800 letters to be read at a time. His technique, known as the Sanger method, increased by a thousand times the rate at which scientists could sequence DNA.

In 1977, Dr. Sanger decoded the complete genome of a virus that had more than 5,000 letters. It was the first time the DNA of an entire organism had been sequenced. He went on to decode the 16,000 letters of mitochondria, the energy factories in cells.

Because the Sanger method lends itself to computer automation, it has allowed scientists to unravel ever more complicated genomes — including, in 2003, the three billion letters of the human genetic code, giving scientists greater ability to distinguish between normal and abnormal genes.

In addition, Dr. Sanger’s discoveries were critical to the development of biotechnology drugs, like human growth hormone and clotting factors for hemophilia, which are produced by tiny, genetically modified organisms.

Dr. Sanger shared the 1980 chemistry Nobel with two other scientists: Paul Berg, who determined how to transfer genetic material from one organism to another, and Walter Gilbert, who, independently of Dr. Sanger, also developed a technique to sequence DNA. Because of its relative simplicity, the Sanger method became the dominant approach.

Other scientists who have received two Nobels are John Bardeen for physics (1956 and 1972), Marie Curie for physics (1903) and chemistry (1911), and Linus Pauling for chemistry (1954) and peace (1962).

Dr. Sanger received the Albert Lasker Basic Medical Research Award, often a forerunner to the Nobel, in 1979 for his work on DNA. He retired from the British Medical Research Council in 1983.

Survivors include two sons, Robin and Peter, and a daughter, Sally.

In a 2001 interview, Dr. Sanger spoke about the challenge of winning two Nobel Prizes.

“It’s much more difficult to get the first prize than to get the second one,” he said, “because if you’ve already got a prize, then you can get facilities for work and you can get collaborators, and everything is much easier.”

http://www.nytimes.com/2013/11/21/us/frederick-sanger-two-time-nobel-winning-scientist-dies-at-95.html?pagewanted=2&_r=1&hp

Rothman

STOCKHOLM (AP) — Two Americans and a German-American won the Nobel Prize in medicine on Monday for discovering how key substances are transported within cells, a process involved in such important activities as brain cell communication and the release of insulin.

James Rothman, 62, of Yale University, Randy Schekman, 64, of the University of California, Berkeley, and Dr. Thomas Sudhof, 57, of Stanford University shared the $1.2 million prize for their research on how tiny bubbles called vesicles act as cargo carriers inside cells.

This traffic control system ensures that the cargo is delivered to the right place at the right time and keeps activities inside cells from descending into chaos, the committee said. Defects can be harmful, leading to neurological diseases, diabetes and disorders affecting the immune system.

“Imagine hundreds of thousands of people who are traveling around hundreds of miles of streets; how are they going to find the right way? Where will the bus stop and open its doors so that people can get out?” Nobel committee secretary Goran Hansson said. “There are similar problems in the cell.”

The winners’ discoveries in the 1970s, ’80s and ’90s have helped doctors diagnose a severe form of epilepsy and immune deficiency diseases in children, Hansson said. In the future, scientists hope the research could lead to medicines against more common types of epilepsy, diabetes and other metabolism deficiencies, he added.

Schekman said he was awakened at 1 a.m. at his home in California by the chairman of the prize committee, just as he was suffering from jetlag after returning from a trip to Germany the night before.

“I wasn’t thinking too straight. I didn’t have anything elegant to say,” he told The Associated Press. “All I could say was ‘Oh my God,’ and that was that.”

He called the prize a wonderful acknowledgment of the work he and his students had done and said he knew it would change his life.

“I called my lab manager and I told him to go buy a couple bottles of Champagne and expect to have a celebration with my lab,” he said.

In the 1970s, Schekman discovered a set of genes that were required for vesicle transport, while Rothman revealed in the 1980s and 1990s how vesicles delivered their cargo to the right places. Also in the ’90s, Sudhof identified the machinery that controls when vesicles release chemical messengers from one brain cell that let it communicate with another.

“This is not an overnight thing. Most of it has been accomplished and developed over many years, if not decades,” Rothman told the AP.

Rothman said he lost grant money for the work recognized by the Nobel committee, but he will now reapply, hoping the Nobel prize will make a difference in receiving funding.

Sudhof, who was born in Germany but moved to the U.S. in 1983 and also has U.S. citizenship, told the AP he received the call from the committee while driving toward the city of Baeza, in southern Spain, where he was due to give a talk.

“I got the call while I was driving and like a good citizen I pulled over and picked up the phone,” he said. “To be honest, I thought at first it was a joke. I have a lot of friends who might play these kinds of tricks.”

The medicine prize kicked off this year’s Nobel announcements. The awards in physics, chemistry, literature, peace and economics will be announced by other prize juries this week and next. Each prize is worth 8 million Swedish kronor ($1.2 million).

Rothman and Schekman won the Albert Lasker Basic Medical Research Award for their research in 2002 — an award often seen as a precursor of a Nobel Prize. Sudhof won the Lasker award this year.

“I might have been just as happy to have been a practicing primary-care doctor,” Sudhof said after winning that prize. “But as a medical student I had interacted with patients suffering from neurodegeneration or acute clinical schizophrenia. It left an indelible mark on my memory.”

Jeremy Berg, former director of the National Institute of General Medical Sciences in Bethesda, Maryland, said Monday’s announcement was “long overdue” and widely expected because the research was “so fundamental, and has driven so much other research.”

Berg, who now directs the Institute for Personalized Medicine at the University of Pittsburgh, said the work provided the intellectual framework that scientists use to study how brain cells communicate and how other cells release hormones. In both cases, vesicles play a key role by delivering their cargo to the cell surface and releasing it to the outside, he told the AP.

So the work has indirectly affected research into virtually all neurological disease as well as other diseases, he said.

Established by Swedish industrialist Alfred Nobel, the Nobel Prizes have been handed out by award committees in Stockholm and Oslo since 1901. The winners always receive their awards on Dec. 10, the anniversary of Nobel’s death in 1896.

Last year’s Nobel medicine award went to Britain’s John Gurdon and Japan’s Shinya Yamanaka for their contributions to stem cell science.

http://news.yahoo.com/americans-german-american-win-medicine-nobel-132221489.html