Posts Tagged ‘physics’

Stephen Hawking submitted the final version of his last scientific paper just two weeks before he died, and it lays the theoretical groundwork for discovering a parallel universe.

Hawking, who passed away on Wednesday aged 76, was co-author to a mathematical paper which seeks proof of the “multiverse” theory, which posits the existence of many universes other than our own.

The paper, called “A Smooth Exit from Eternal Inflation”, had its latest revisions approved on March 4, ten days before Hawking’s death.

According to The Sunday Times newspaper, the paper is due to be published by an unnamed “leading journal” after a review is complete., Cornell University website which tracks scientific papers before they are published, has a record of the paper including the March 2018 update.

According to The Sunday Times, the contents of the paper sets out the mathematics necessary for a deep-space probe to collect evidence which might prove that other universes exist.

The highly theoretical work posits that evidence of the multiverse should be measurable in background radiation dating to the beginning of time. This in turn could be measured by a deep-space probe with the right sensors on-board.

Thomas Hertog, a physics professor who co-authored the paper with Hawking, said the paper aimed “to transform the idea of a multiverse into a testable scientific framework.”

Hertog, who works at KU Leuven University in Belgium, told The Sunday Times he met with Hawking in person to get final approval before submitting the paper.

Thanks to Kebmodee for bringing this to the It’s Interesting community.


Dark matter is normally thought to form a spherical halo (illustrated in blue) around galaxies like the Milky Way. Two physicists suggest that dark matter could collapse into more complex structures.


Clumps of dark matter may be sailing through the Milky Way and other galaxies.

Typically thought to form featureless blobs surrounding entire galaxies, dark matter could also collapse into smaller clumps — similar to normal matter condensing into stars and planets — a new study proposes. Thousands of collapsed dark clumps could constitute 10 percent of the Milky Way’s dark matter, researchers from Rutgers University in Piscataway, N.J., report in a paper accepted in Physical Review Letters.

Dark matter is necessary to explain the motions of stars in galaxies. Without an extra source of mass, astronomers can’t explain why stars move at the speeds they do. Such observations suggest that a spherical “halo” of invisible, unidentified massive particles surrounds each galaxy.

But the halo might be only part of the story. “We don’t really know what dark matter at smaller scales is doing,” says theoretical physicist Matthew Buckley, who coauthored the study with physicist Anthony DiFranzo. More complex structures might be hiding within the halo.

To collapse, dark matter would need a way to lose energy, slowing particles as gravity pulls them into the center of the clump, so they can glom on to one another rather than zipping right through. In normal matter, this energy loss occurs via electromagnetic interactions. But the most commonly proposed type of dark matter particles, weakly interacting massive particles, or WIMPs, have no such way to lose energy.

Buckley and DiFranzo imagined what might happen if an analogous “dark electromagnetism” allowed dark matter particles to interact and radiate energy. The researchers considered how dark matter would behave if it were like a pared-down version of normal matter, composed of two types of charged particles — a dark proton and a dark electron. Those particles could interact — forming dark atoms, for example — and radiate energy in the form of dark photons, a dark matter analog to particles of light.

The researchers found that small clouds of such dark matter could collapse, but larger clouds, the mass of the Milky Way, for example, couldn’t — they have too much energy to get rid of. This finding means that the Milky Way could harbor a vast halo, with a sprinkling of dark matter clumps within. By picking particular masses for the hypothetical particles, the researchers were able to calculate the number and sizes of clumps that could be floating through the Milky Way. Varying the choice of masses led to different levels of clumpiness.

In Buckley and DiFranzo’s scenario, the dark matter can’t squish down to the size of a star. Before the clumps get that small, they reach a point where they can’t lose any more energy. So a single clump might be hundreds of light-years across.

The result, says theoretical astrophysicist Dan Hooper of Fermilab in Batavia, Ill., is “interesting and novel … but it also leaves a lot of open questions.” Without knowing more about dark matter, it’s hard to predict what kind of clumps it might actually form.

Scientists have looked for the gravitational effects of unidentified, star-sized objects, which could be made either of normal matter or dark matter, known as massive compact halo objects, or MACHOs. But such objects turned out to be too rare to make up a significant fraction of dark matter. On the other hand, says Hooper, “what if these things collapse to solar system‒sized objects?” Such larger clumps haven’t have been ruled out yet.

By looking for the effects of unexplained gravitational tugs on stars, scientists may be able to determine whether galaxies are littered with dark matter clumps. “Because we didn’t think these things were a possibility, I don’t think people have looked,” Buckley says. “It was a blind spot.”

Up until now, most scientists have focused on WIMPs. But after decades of searching in sophisticated detectors, there’s no sign of the particles (SN: 11/12/16, p. 14). As a result, says theoretical physicist Hai-Bo Yu of the University of California, Riverside, “there’s a movement in the community.” Scientists are now exploring new ideas for what dark matter might be.

M.R. Buckley and A. DiFranzo. Collapsed dark matter structures. Physical Review Letters, in press, 2018.

by Paul Ratner

Time crystals are hypothetical structures proposed by Nobel-Prize winning theoretical physicist Frank Wilczek in 2012. What’s special about them is that they would move without using energy, breaking a fundamental physics law of time-translation symmetry. Such crystals would move while remaining in their ground states, when they are at their lowest energy.

They’ve been deemed “impossible” by most physicists and yet, at the end of August, experimental physicists from University of California, Santa Barbara and Microsoft’s research lab station Q published a notable paper on how time crystals may be feasible and their plan for creating them. What’s also remarkable, if time crystals were actually created, they would re-define the nature of time itself, potentially reconciling the rather weird field of quantum mechanics with the theory of relativity.

Now comes news that scientists from the University of Maryland tried an experiment suggested by Frank Wilczek and actually made a time crystal that works. They created a ring-shaped quantum system of a group of ytterbium ions, cooled off to their ground state. In theory, this system should not be moving at all. But if it was to periodically rotate, that would prove the existence of symmetry-breaking time crystals.

The research scientists used a laser to change the spin of the ions to put them into perpetual oscillation. As reported by MIT Tech Review, they discovered that over time the oscillations eventually happened at twice the original rate. Since no energy was added to the system, the only explanation was that they created a time crystal.

As their paper undergoes the peer-review process, the physicists look for others to repeat their experiment. If their discovery is confirmed, the repercussions of this groundbreaking development are only beginning to be understood. One potential application suggested by the scientists may be in quantum computing, where time crystals may be utilized for quantum memory.

You can read the new paper “Observation of a Discrete Time Crystal” here:

Physicists are putting themselves out of a job, using artificial intelligence to run a complex experiment. The experiment created an extremely cold gas trapped in a laser beam, known as a Bose-Einstein condensate, replicating the experiment that won the 2001 Nobel Prize.

Physicists are putting themselves out of a job, using artificial intelligence to run a complex experiment.

The experiment, developed by physicists from The Australian National University (ANU) and UNSW ADFA, created an extremely cold gas trapped in a laser beam, known as a Bose-Einstein condensate, replicating the experiment that won the 2001 Nobel Prize.

“I didn’t expect the machine could learn to do the experiment itself, from scratch, in under an hour,” said co-lead researcher Paul Wigley from the ANU Research School of Physics and Engineering.

“A simple computer program would have taken longer than the age of the Universe to run through all the combinations and work this out.”

Bose-Einstein condensates are some of the coldest places in the Universe, far colder than outer space, typically less than a billionth of a degree above absolute zero.

They could be used for mineral exploration or navigation systems as they are extremely sensitive to external disturbances, which allows them to make very precise measurements such as tiny changes in the Earth’s magnetic field or gravity.

The artificial intelligence system’s ability to set itself up quickly every morning and compensate for any overnight fluctuations would make this fragile technology much more useful for field measurements, said co-lead researcher Dr Michael Hush from UNSW ADFA.

“You could make a working device to measure gravity that you could take in the back of a car, and the artificial intelligence would recalibrate and fix itself no matter what,” he said.

“It’s cheaper than taking a physicist everywhere with you.”

The team cooled the gas to around 1 microkelvin, and then handed control of the three laser beams over to the artificial intelligence to cool the trapped gas down to nanokelvin.

Researchers were surprised by the methods the system came up with to ramp down the power of the lasers.

“It did things a person wouldn’t guess, such as changing one laser’s power up and down, and compensating with another,” said Mr Wigley.

“It may be able to come up with complicated ways humans haven’t thought of to get experiments colder and make measurements more precise.

The new technique will lead to bigger and better experiments, said Dr Hush.

“Next we plan to employ the artificial intelligence to build an even larger Bose-Einstein condensate faster than we’ve seen ever before,” he said.

The research is published in the Nature group journal Scientific Reports.

By Clara Moskowitz

The universe we live in may not be the only one out there. In fact, our universe could be just one of an infinite number of universes making up a “multiverse.”

Though the concept may stretch credulity, there’s good physics behind it. And there’s not just one way to get to a multiverse — numerous physics theories independently point to such a conclusion. In fact, some experts think the existence of hidden universes is more likely than not.

Here are the five most plausible scientific theories suggesting we live in a multiverse:

1. Infinite Universes

Scientists can’t be sure what the shape of space-time is, but most likely, it’s flat (as opposed to spherical or even donut-shape) and stretches out infinitely. But if space-time goes on forever, then it must start repeating at some point, because there are a finite number of ways particles can be arranged in space and time.

So if you look far enough, you would encounter another version of you — in fact, infinite versions of you. Some of these twins will be doing exactly what you’re doing right now, while others will have worn a different sweater this morning, and still others will have made vastly different career and life choices.

Because the observable universe extends only as far as light has had a chance to get in the 13.7 billion years since the Big Bang (that would be 13.7 billion light-years), the space-time beyond that distance can be considered to be its own separate universe. In this way, a multitude of universes exists next to each other in a giant patchwork quilt of universes.

Space-time may stretch out to infinity. If so, then everything in our universe is bound to repeat at some point, creating a patchwork quilt of infinite universes.

2. Bubble Universes

In addition to the multiple universes created by infinitely extending space-time, other universes could arise from a theory called “eternal inflation.” Inflation is the notion that the universe expanded rapidly after the Big Bang, in effect inflating like a balloon. Eternal inflation, first proposed by Tufts University cosmologist Alexander Vilenkin, suggests that some pockets of space stop inflating, while other regions continue to inflate, thus giving rise to many isolated “bubble universes.”

Thus, our own universe, where inflation has ended, allowing stars and galaxies to form, is but a small bubble in a vast sea of space, some of which is still inflating, that contains many other bubbles like ours. And in some of these bubble universes, the laws of physics and fundamental constants might be different than in ours, making some universes strange places indeed.

3. Parallel Universes

Another idea that arises from string theory is the notion of “braneworlds” — parallel universes that hover just out of reach of our own, proposed by Princeton University’s Paul Steinhardt and Neil Turok of the Perimeter Institute for Theoretical Physics in Ontario, Canada. The idea comes from the possibility of many more dimensions to our world than the three of space and one of time that we know. In addition to our own three-dimensional “brane” of space, other three-dimensional branes may float in a higher-dimensional space.

Our universe may live on one membrane, or “brane” that is parallel to many others containing their own universes, all floating in a higher-dimensional space.

Columbia University physicist Brian Greene describes the idea as the notion that “our universe is one of potentially numerous ‘slabs’ floating in a higher-dimensional space, much like a slice of bread within a grander cosmic loaf,” in his book “The Hidden Reality” (Vintage Books, 2011).

A further wrinkle on this theory suggests these brane universes aren’t always parallel and out of reach. Sometimes, they might slam into each other, causing repeated Big Bangs that reset the universes over and over again.

4. Daughter Universes

The theory of quantum mechanics, which reigns over the tiny world of subatomic particles, suggests another way multiple universes might arise. Quantum mechanics describes the world in terms of probabilities, rather than definite outcomes. And the mathematics of this theory might suggest that all possible outcomes of a situation do occur — in their own separate universes. For example, if you reach a crossroads where you can go right or left, the present universe gives rise to two daughter universes: one in which you go right, and one in which you go left.

“And in each universe, there’s a copy of you witnessing one or the other outcome, thinking — incorrectly — that your reality is the only reality,” Greene wrote in “The Hidden Reality.”

5. Mathematical Universes

Scientists have debated whether mathematics is simply a useful tool for describing the universe, or whether math itself is the fundamental reality, and our observations of the universe are just imperfect perceptions of its true mathematical nature. If the latter is the case, then perhaps the particular mathematical structure that makes up our universe isn’t the only option, and in fact all possible mathematical structures exist as their own separate universes.

“A mathematical structure is something that you can describe in a way that’s completely independent of human baggage,” said Max Tegmark of MIT, who proposed this brain-twistin gidea. “I really believe that there is this universe out there that can exist independently of me that would continue to exist even if there were no humans.”

See more at:


By Tia Ghose

Bizarrely behaving light particles show that the famous Schrödinger’s cat thought experiment, meant to reveal the strange nature of subatomic particles, can get even weirder than physicists thought.

Not only can the quantum cat be alive and dead at the same time — but it can also be in two places at once, new research shows.

“We are showing an analogy to Schrödinger’s cat that is made out of an electromagnetic field that is confined in two cavities,” said study lead author Chen Wang, a physicist at Yale University. “The interesting thing here is the cat is in two boxes at once.”

The findings could have implications for cracking unsolvable mathematicalproblems using quantum computing, which relies on the ability of subatomic particles to be in multiple states at once, Wang said.

Cat experiment

The famous paradox was laid out by physicist Erwin Schrödinger in 1935 to elucidate the notion of quantum superposition, the phenomenon in which tiny subatomic particles can be in multiple states at once.

In the paradox, a cat is trapped in a box with a deadly radioactive atom. If the radioactive atom decayed, the cat was a goner, but if it had not yet decayed, the cat was still alive. Because, according to the dominant interpretation of quantum mechanics, particles can exist in multiple states until they are measured, logic dictated that the cat would be both alive and dead at the same time until the radioactive atom was measured.

Cat in two boxes

The setup for the new study was deceptively simple: The team created two aluminum cavities about 1 inch (2.5 centimeters) across, and then used a sapphire chip to produce a standing wave of light in those cavities. They used a special electronic element, called a Josephson Junction, to superimpose a standing wave of two separate wavelengths of light in each cavity. The end result was that the cat, or the group of about 80 photons in the cavities, was oscillating at two different wavelengths at once — in two different places. Figuring out whether the cat is dead or alive, so to speak, requires opening both boxes.

Though conceptually simple, the physical setup required ultrapure aluminum and highly precise chips and electromagnetic devices to ensure that the photons were as isolated from the environment as possible, Wang said.

That’s because at large scales, quantum superposition tends to disappear almost instantaneously, as soon as these superimposed subatomic particles whose fates are linked interact with the environment. Most of the time, this so-called decoherence would happen so quickly that researchers would have no time to observe the superposition, Wang said. So devices that keep coherence (or keep the particles in superposition) for long periods of time, known as the quality factor, is extremely important, Wang added.

“The quality of these things determines once you put a single excitation into the system, how long does it live, or does it die away,” Wang told Live Science.

If the excitation of the system — the production of the electromagnetic standing wave — is similar to the swing of a pendulum, then “our pendulum swings essentially tens of billions of times before it stops.”

The new findings could make for easier error correction in quantum computing, Wang said. In quantum computing, bits of information are encoded in the fragile superposition states of particles, and once that superposition is lost or corrupted, the data is also corrupted. So most quantum computing concepts involve a lot of redundancy.

“It’s well understood that 99 percent of computation or more will be done to correct for errors, rather than computation itself,” Wang said.

Their system could conceivably get around this problem by encoding the redundancy in the size of the cavity itself rather than in separate, calculated bits, Wang said.

“Demonstrating this cat in a ‘two boxes state’ is basically the first step in our architecture,” Wang said.

See more at:

Researchers from North Carolina State University have discovered a new phase of solid carbon, called Q-carbon, which is distinct from the known phases of graphite and diamond. They have also developed a technique for using Q-carbon to make diamond-related structures at room temperature and at ambient atmospheric pressure in air.

Phases are distinct forms of the same material. Graphite is one of the solid phases of carbon; diamond is another.

“We’ve now created a third solid phase of carbon,” says Jay Narayan, the John C. Fan Distinguished Chair Professor of Materials Science and Engineering at NC State and lead author of three papers describing the work. “The only place it may be found in the natural world would be possibly in the core of some planets.”

Q-carbon has some unusual characteristics. For one thing, it is ferromagnetic – which other solid forms of carbon are not.

“We didn’t even think that was possible,” Narayan says.

In addition, Q-carbon is harder than diamond, and glows when exposed to even low levels of energy.
“Q-carbon’s strength and low work-function – its willingness to release electrons – make it very promising for developing new electronic display technologies,” Narayan says.

But Q-carbon can also be used to create a variety of single-crystal diamond objects. To understand that, you have to understand the process for creating Q-carbon.

Researchers start with a substrate, such as sapphire, glass or a plastic polymer. The substrate is then coated with amorphous carbon – elemental carbon that, unlike graphite or diamond, does not have a regular, well-defined crystalline structure. The carbon is then hit with a single laser pulse lasting approximately 200 nanoseconds. During this pulse, the temperature of the carbon is raised to 4,000 Kelvin (or around 3,727 degrees Celsius) and then rapidly cooled. This operation takes place at one atmosphere – the same pressure as the surrounding air.

The end result is a film of Q-carbon, and researchers can control the process to make films between 20 nanometers and 500 nanometers thick.

By using different substrates and changing the duration of the laser pulse, the researchers can also control how quickly the carbon cools. By changing the rate of cooling, they are able to create diamond structures within the Q-carbon.

“We can create diamond nanoneedles or microneedles, nanodots, or large-area diamond films, with applications for drug delivery, industrial processes and for creating high-temperature switches and power electronics,” Narayan says. “These diamond objects have a single-crystalline structure, making them stronger than polycrystalline materials. And it is all done at room temperature and at ambient atmosphere – we’re basically using a laser like the ones used for laser eye surgery. So, not only does this allow us to develop new applications, but the process itself is relatively inexpensive.”
And, if researchers want to convert more of the Q-carbon to diamond, they can simply repeat the laser-pulse/cooling process.

If Q-carbon is harder than diamond, why would someone want to make diamond nanodots instead of Q-carbon ones? Because we still have a lot to learn about this new material.

“We can make Q-carbon films, and we’re learning its properties, but we are still in the early stages of understanding how to manipulate it,” Narayan says. “We know a lot about diamond, so we can make diamond nanodots. We don’t yet know how to make Q-carbon nanodots or microneedles. That’s something we’re working on.”

NC State has filed two provisional patents on the Q-carbon and diamond creation techniques.
The work is described in two papers, both of which were co-authored by NC State Ph.D. student Anagh Bhaumik. “Novel Phase of Carbon, Ferromagnetism and Conversion into Diamond” will be published online Nov. 30 in the Journal of Applied Physics. “Direct conversion of amorphous carbon into diamond at ambient pressures and temperatures in air” was published Oct. 7 in the journal APL Materials.