Archive for the ‘multiverse’ Category

By Clara Moskowitz

The universe we live in may not be the only one out there. In fact, our universe could be just one of an infinite number of universes making up a “multiverse.”

Though the concept may stretch credulity, there’s good physics behind it. And there’s not just one way to get to a multiverse — numerous physics theories independently point to such a conclusion. In fact, some experts think the existence of hidden universes is more likely than not.

Here are the five most plausible scientific theories suggesting we live in a multiverse:

1. Infinite Universes

Scientists can’t be sure what the shape of space-time is, but most likely, it’s flat (as opposed to spherical or even donut-shape) and stretches out infinitely. But if space-time goes on forever, then it must start repeating at some point, because there are a finite number of ways particles can be arranged in space and time.

So if you look far enough, you would encounter another version of you — in fact, infinite versions of you. Some of these twins will be doing exactly what you’re doing right now, while others will have worn a different sweater this morning, and still others will have made vastly different career and life choices.

Because the observable universe extends only as far as light has had a chance to get in the 13.7 billion years since the Big Bang (that would be 13.7 billion light-years), the space-time beyond that distance can be considered to be its own separate universe. In this way, a multitude of universes exists next to each other in a giant patchwork quilt of universes.


Space-time may stretch out to infinity. If so, then everything in our universe is bound to repeat at some point, creating a patchwork quilt of infinite universes.

2. Bubble Universes

In addition to the multiple universes created by infinitely extending space-time, other universes could arise from a theory called “eternal inflation.” Inflation is the notion that the universe expanded rapidly after the Big Bang, in effect inflating like a balloon. Eternal inflation, first proposed by Tufts University cosmologist Alexander Vilenkin, suggests that some pockets of space stop inflating, while other regions continue to inflate, thus giving rise to many isolated “bubble universes.”

Thus, our own universe, where inflation has ended, allowing stars and galaxies to form, is but a small bubble in a vast sea of space, some of which is still inflating, that contains many other bubbles like ours. And in some of these bubble universes, the laws of physics and fundamental constants might be different than in ours, making some universes strange places indeed.

3. Parallel Universes

Another idea that arises from string theory is the notion of “braneworlds” — parallel universes that hover just out of reach of our own, proposed by Princeton University’s Paul Steinhardt and Neil Turok of the Perimeter Institute for Theoretical Physics in Ontario, Canada. The idea comes from the possibility of many more dimensions to our world than the three of space and one of time that we know. In addition to our own three-dimensional “brane” of space, other three-dimensional branes may float in a higher-dimensional space.

multiverse-art-3
Our universe may live on one membrane, or “brane” that is parallel to many others containing their own universes, all floating in a higher-dimensional space.

Columbia University physicist Brian Greene describes the idea as the notion that “our universe is one of potentially numerous ‘slabs’ floating in a higher-dimensional space, much like a slice of bread within a grander cosmic loaf,” in his book “The Hidden Reality” (Vintage Books, 2011).

A further wrinkle on this theory suggests these brane universes aren’t always parallel and out of reach. Sometimes, they might slam into each other, causing repeated Big Bangs that reset the universes over and over again.


4. Daughter Universes

The theory of quantum mechanics, which reigns over the tiny world of subatomic particles, suggests another way multiple universes might arise. Quantum mechanics describes the world in terms of probabilities, rather than definite outcomes. And the mathematics of this theory might suggest that all possible outcomes of a situation do occur — in their own separate universes. For example, if you reach a crossroads where you can go right or left, the present universe gives rise to two daughter universes: one in which you go right, and one in which you go left.

“And in each universe, there’s a copy of you witnessing one or the other outcome, thinking — incorrectly — that your reality is the only reality,” Greene wrote in “The Hidden Reality.”

5. Mathematical Universes

Scientists have debated whether mathematics is simply a useful tool for describing the universe, or whether math itself is the fundamental reality, and our observations of the universe are just imperfect perceptions of its true mathematical nature. If the latter is the case, then perhaps the particular mathematical structure that makes up our universe isn’t the only option, and in fact all possible mathematical structures exist as their own separate universes.

“A mathematical structure is something that you can describe in a way that’s completely independent of human baggage,” said Max Tegmark of MIT, who proposed this brain-twistin gidea. “I really believe that there is this universe out there that can exist independently of me that would continue to exist even if there were no humans.”

See more at: http://www.livescience.com/25335-multiple-universes-5-theories.html#sthash.KnoSu3sE.dpuf

Advertisements

universe

Is our universe merely one of billions? Evidence of the existence of ‘multiverse’ revealed for the first time by a cosmic map of background radiation data gathered by Planck telescope. The first ‘hard evidence’ that other universes exist has been claimed to have been found by cosmologists studying new Planck data released this past June. They have concluded that it shows anomalies that can only have been caused by the gravitational pull of other universes.

“Such ideas may sound wacky now, just like the Big Bang theory did three generations ago,” says George Efstathiou, professor of astrophysics at Cambridge University.”But then we got evidence and now it has changed the whole way we think about the universe.”

Scientists had predicted that it should be evenly distributed, but the map shows a stronger concentration in the south half of the sky and a ‘cold spot’ that cannot be explained by current understanding of physics. Laura Mersini-Houghton, theoretical physicist at the University of North Carolina at Chapel Hill, and Richard Holman, professor at Carnegie Mellon University, predicted that anomalies in radiation existed and were caused by the pull from other universes in 2005. Mersini-Houghton will be in Britain soon promoting this theory and, we expect, the hard evidence at the Hay Festival on May 31 and at Oxford on June 11.

Dr Mersini-Houghton believes her hypothesis has been proven from the Planck data that data has been used to create a map of light from when the universe was just 380,000 years old. “These anomalies were caused by other universes pulling on our universe as it formed during the Big Bang,” she says. “They are the first hard evidence for the existence of other universes that we have seen.”

Columbia University mathematician Peter Woit writes in his blog, Not Even Wrong, that in recent years there have been many claims made for “evidence” of a multiverse, supposedly found in the CMB data. “Such claims often came with the remark that the Planck CMB data would convincingly decide the matter. When the Planck data was released two months ago, I looked through the press coverage and through the Planck papers for any sign of news about what the new data said about these multiverse evidence claims. There was very little there; possibly the Planck scientists found these claims to be so outlandish that it wasn’t worth the time to look into what the new data had to say about them.

“One exception,” Woit adds, “was this paper, where Planck looked for evidence of ‘dark flow’. They found nothing, and a New Scientist article summarized the situation: ‘The Planck team’s paper appears to rule out the claims of Kashlinsky and collaborators,’ says David Spergel of Princeton University, who was not involved in the work. If there is no dark flow, there is no need for exotic explanations for it, such as other universes, says Planck team member Elena Pierpaoli at the University of Southern California, Los Angeles. “You don’t have to think of alternatives.'”

“Dark Flow” sounds like a new SciFi Channel series. It’s not! The dark flow is controversial because the distribution of matter in the observed universe cannot account for it. Its existence suggests that some structure beyond the visible universe — outside our “horizon” — is pulling on matter in our vicinity.

Back in the Middle Ages, maps showed terrifying images of sea dragons at the boundaries of the known world. Today, scientists have observed strange new motion at the very limits of the known universe – kind of where you’d expect to find new things, but they still didn’t expect this. A huge swath of galactic clusters seem to be heading to a cosmic hotspot and nobody knows why.

Cosmologists regard the microwave background — a flash of light emitted 380,000 years after the universe formed — as the ultimate cosmic reference frame. Relative to it, all large-scale motion should show no preferred direction. A 2010 study tracked the mysterious cosmic ‘dark flow’ to twice the distance originally reported. The study was led by Alexander Kashlinsky at NASA’s Goddard Space Flight Center in Greenbelt, Maryland.

“This is not something we set out to find, but we cannot make it go away,” Kashlinsky said. “Now we see that it persists to much greater distances – as far as 2.5 billion light-years away,” he added.

Dark flow describes a possible non-random component of the peculiar velocity of galaxy clusters. The actual measured velocity is the sum of the velocity predicted by Hubble’s Law plus a small and unexplained (or dark) velocity flowing in a common direction. According to standard cosmological models, the motion of galaxy clusters with respect to the cosmic microwave background should be randomly distributed in all directions. However, analyzing the three-year WMAP data using the kinematic Sunyaev-Zel’dovich effect, the authors of the study found evidence of a “surprisingly coherent” 600–1000 km/s flow of clusters toward a 20-degree patch of sky between the constellations of Centaurus and Vela.

The clusters appear to be moving along a line extending from our solar system toward Centaurus/Hydra, but the direction of this motion is less certain. Evidence indicates that the clusters are headed outward along this path, away from Earth, but the team cannot yet rule out the opposite flow.

“We detect motion along this axis, but right now our data cannot state as strongly as we’d like whether the clusters are coming or going,” Kashlinsky said.

The unexplained motion has hundreds of millions of stars dashing towards a certain part of the sky at over eight hundred kilometers per second. Not much speed in cosmic terms, but the preferred direction certainly is: most cosmological models have things moving in all directions equally at the extreme edges of the universe. Something that could make things aim for a specific spot on such a massive scale hasn’t been imagined before. The scientists are keeping to the proven astrophysical strategy of calling anything they don’t understand “dark”, terming the odd motion a “dark flow”.

A black hole can’t explain the observations – objects would accelerate into the hole, while the NASA scientists see constant motion over a vast expanse of a billion light-years. You have no idea how big that is. This is giant on a scale where it’s not just that we can’t see what’s doing it; it’s that the entire makeup of the universe as we understand it can’t be right if this is happening.

The hot X-ray-emitting gas within a galaxy cluster scatters photons from the cosmic microwave background (CMB). Because galaxy clusters don’t precisely follow the expansion of space, the wavelengths of scattered photons change in a way that reflects each cluster’s individual motion.

This results in a minute shift of the microwave background’s temperature in the cluster’s direction. The change, which astronomers call the kinematic Sunyaev-Zel’dovich (KSZ) effect, is so small that it has never been observed in a single galaxy cluster.

But in 2000, Kashlinsky, working with Fernando Atrio-Barandela at the University of Salamanca, Spain, demonstrated that it was possible to tease the subtle signal out of the measurement noise by studying large numbers of clusters.

In 2008, armed with a catalog of 700 clusters assembled by Harald Ebeling at the University of Hawaii and Dale Kocevski, now at the University of California, Santa Cruz, the researchers applied the technique to the three-year WMAP data release. That’s when the mystery motion first came to light.

The new study builds on the previous one by using the five-year results from WMAP and by doubling the number of galaxy clusters.

“It takes, on average, about an hour of telescope time to measure the distance to each cluster we work with, not to mention the years required to find these systems in the first place,” Ebeling said. “This is a project requiring considerable followthrough.”

According to Atrio-Barandela, who has focused on understanding the possible errors in the team’s analysis, the new study provides much stronger evidence that the dark flow is real. For example, the brightest clusters at X-ray wavelengths hold the greatest amount of hot gas to distort CMB photons. “When processed, these same clusters also display the strongest KSZ signature — unlikely if the dark flow were merely a statistical fluke,” he said.

In addition, the team, which now also includes Alastair Edge at the University of Durham, England, sorted the cluster catalog into four “slices” representing different distance ranges. They then examined the preferred flow direction for the clusters within each slice. While the size and exact position of this direction display some variation, the overall trends among the slices exhibit remarkable agreement.

The researchers are currently working to expand their cluster catalog in order to track the dark flow to about twice the current distance. Improved modeling of hot gas within the galaxy clusters will help refine the speed, axis, and direction of motion.

Future plans call for testing the findings against newer data released from the WMAP project and the European Space Agency’s Planck mission, which is also currently mapping the microwave background.

Which is fantastic! Such discoveries force a whole new set of ideas onto the table which, even if they turn out to be wrong, are the greatest ways to advance science and our understanding of everything. One explanation that’s already been offered is that our universe underwent a period of hyper-inflation early in its existence, and everything we think of as the vast and infinite universe is actually a small corner under the sofa of the real expanse of reality. Which would be an amazing, if humbling, discovery.

The image at the top of the page shows the most distant object we have ever observed with high confidence, according to Wei Zheng, the leading astronomer of the team at Johns Hopkins University who that noticed the galaxy on multiple images from both the Hubble and Spitzer space telescopes. At 13.2-billion years old, we are technically seeing this galaxy when it was very young, but its light is only reaching Earth now.

http://www.dailygalaxy.com/my_weblog/2013/10/is-our-universe-one-of-billions-new-planck-data-has-anomalies-caused-by-unknown-gravitational-pull-t.html