Posts Tagged ‘neurodegeneration’

By Jim Dryden

It may be possible in the future to screen patients for Alzheimer’s disease using an eye exam.

Using technology similar to what is found in many eye doctors’ offices, researchers at Washington University School of Medicine in St. Louis have detected evidence suggesting Alzheimer’s in older patients who had no symptoms of the disease.

Their study, involving 30 patients, is published Aug. 23 in the journal JAMA Ophthalmology.

“This technique has great potential to become a screening tool that helps decide who should undergo more expensive and invasive testing for Alzheimer’s disease prior to the appearance of clinical symptoms,” said the study’s first author, Bliss E. O’Bryhim, MD, PhD, a resident physician in the Department of Ophthalmology & Visual Sciences. “Our hope is to use this technique to understand who is accumulating abnormal proteins in the brain that may lead them to develop Alzheimer’s.”

Significant brain damage from Alzheimer’s disease can occur years before any symptoms such as memory loss and cognitive decline appear. Scientists estimate that Alzheimer’s-related plaques can build up in the brain two decades before the onset of symptoms, so researchers have been looking for ways to detect the disease sooner.

Physicians now use PET scans and lumbar punctures to help diagnose Alzheimer’s, but they are expensive and invasive.

In previous studies, researchers examining the eyes of people who had died from Alzheimer’s have reported that the eyes of such patients showed signs of thinning in the center of the retina and degradation of the optic nerve.

In the new study, the researchers used a noninvasive technique — called optical coherence tomography angiography — to examine the retinas in eyes of 30 study participants with an average age in the mid 70s, none of whom exhibited clinical symptoms of Alzheimer’s.

Those participants were patients in The Memory and Aging Project at Washington University’s Knight Alzheimer’s Disease Research Center. About half of those in the study had elevated levels of the Alzheimer’s proteins amyloid or tau as revealed by PET scans or cerebrospinal fluid, suggesting that although they didn’t have symptoms, they likely would develop Alzheimer’s. In the other subjects, PET scans and cerebrospinal fluid analyses were normal.

“In the patients with elevated levels of amyloid or tau, we detected significant thinning in the center of the retina,” said co-principal investigator Rajendra S. Apte, MD, PhD, the Paul A. Cibis Distinguished Professor of Ophthalmology and Visual Sciences. “All of us have a small area devoid of blood vessels in the center of our retinas that is responsible for our most precise vision. We found that this zone lacking blood vessels was significantly enlarged in people with preclinical Alzheimer’s disease.”

The eye test used in the study shines light into the eye, allowing a doctor to measure retinal thickness, as well as the thickness of fibers in the optic nerve. A form of that test often is available in ophthalmologist’s offices.

For this study, however, the researchers added a new component to the more common test: angiography, which allows doctors to distinguish red blood cells from other tissue in the retina.

“The angiography component allows us to look at blood-flow patterns,” said the other co-principal investigator, Gregory P. Van Stavern, MD, a professor of ophthalmology and visual sciences. “In the patients whose PET scans and cerebrospinal fluid showed preclinical Alzheimer’s, the area at the center of the retina without blood vessels was significantly larger, suggesting less blood flow.”

Added Apte: “The retina and central nervous system are so interconnected that changes in the brain could be reflected in cells in the retina.”

Of the patients studied, 17 had abnormal PET scans and/or lumbar punctures, and all of them also had retinal thinning and significant areas without blood vessels in the centers of their retinas. The retinas appeared normal in the patients whose PET scans and lumbar punctures were within the typical range.

More studies in patients are needed to replicate the findings, Van Stavern said, but he noted that if changes detected with this eye test can be used as markers for Alzheimer’s risk, it may be possible one day to screen people as young as their 40s or 50s to see whether they are at risk for the disease.

“We know the pathology of Alzheimer’s disease starts to develop years before symptoms appear, but if we could use this eye test to notice when the pathology is beginning, it may be possible one day to start treatments sooner to delay further damage,” he said.

O’Bryhim BE, Apte RS, Kung N, Coble D, Van Stavern GP. Optical coherence tomography angiography findings in pre-clinical Alzheimer’s disease. JAMA Ophthalmology, Aug. 23, 2018.

https://source.wustl.edu/2018/08/alzheimers-one-day-may-be-predicted-during-eye-exam/

Advertisements


Reprinted from The Lancet Neurology, http://dx.doi.org/10.1016/S1474-4422(18)30245-X, Trapp et al, Cortical neuronal densities and cerebral white matter demyelination in multiple sclerosis: a retrospective study, Copyright (2018), with permission from Elsevier


Bruce Trapp, Ph.D., chair of Cleveland Clinic’s Lerner Research Institute Department of Neurosciences

Cleveland Clinic researchers have discovered a new subtype of multiple sclerosis (MS), providing a better understanding of the individualized nature of the disease.

MS has long been characterized as a disease of the brain’s white matter, where immune cells destroy myelin – the fatty protective covering on nerve cells. The destruction of myelin (called demyelination) was believed to be responsible for nerve cell (neuron) death that leads to irreversible disability in patients with MS.

However, in the new findings, a research team led by Bruce Trapp, Ph.D., identified for the first time a subtype of the disease that features neuronal loss but no demyelination of the brain’s white matter. The findings, published in Lancet Neurology, could potentially lead to more personalized diagnosis and treatments.

The team’s findings support the concept that neurodegeneration and demyelination can occur independently in MS and underscore the need for more sensitive MRI imaging techniques for evaluating brain pathology in real time and monitoring treatment response in patients with the disease. This new subtype of MS, called myelocortical MS (MCMS), was indistinguishable from traditional MS on MRI. The researchers observed that in MCMS, part of the neurons become swollen and look like typical MS lesions indicative of white matter myelin loss on MRI. The disease was only diagnosed in post-mortem tissues.

“This study opens up a new arena in MS research. It is the first to provide pathological evidence that neuronal degeneration can occur without white matter myelin loss in the brains of patients with the disease,” said Trapp, chair of Cleveland Clinic’s Lerner Research Institute Department of Neurosciences. “This information highlights the need for combination therapies to stop disability progression in MS.”

In the study of brain tissue from 100 MS patients who donated their brains after death, the researchers observed that 12 brains did not have white matter demyelination. They compared microscopic tissue characteristics from the brains and spinal cords of 12 MCMS patients, 12 traditional MS patients and also individuals without neurological disease. Although both MCMS and traditional MS patients had typical MS lesions in the spinal cord and cerebral cortex, only the latter group had MS lesions in the brain white matter.

Despite having no typical MS lesions in the white matter, MCMS brains did have reduced neuronal density and cortical thickness, which are hallmarks of brain degeneration also observed in traditional MS. Contrary to previous belief, these observations show that neuronal loss can occur independently of white matter demyelination.

“The importance of this research is two-fold. The identification of this new MS subtype highlights the need to develop more sensitive strategies for properly diagnosing and understanding the pathology of MCMS,” said Daniel Ontaneda, M.D., clinical director of the brain donation program at Cleveland Clinic’s Mellen Center for Treatment and Research in MS. “We are hopeful these findings will lead to new tailored treatment strategies for patients living with different forms of MS.”

Dr. Trapp is internationally known for his work on mechanisms of neurodegeneration and repair in MS and has published more than 240 peer-reviewed articles and 40 book chapters. He also holds the Morris R. and Ruth V. Graham Endowed Chair in Biomedical Research. In 2017 he received the prestigious Outstanding Investigator award by the National Institute of Neurological Disorders and Stroke to examine the biology of MS and to seek treatments that could slow or reverse the disease.

https://newsroom.clevelandclinic.org/2018/08/21/cleveland-clinic-researchers-discover-novel-subtype-of-multiple-sclerosis/

by Judy George

Retinal thinning was linked to dopaminergic neuronal atrophy in a cross-sectional analysis, raising the possibility that it could be a way to detect pathologic changes in early Parkinson’s disease (PD) patients, researchers said.

Drug-naïve patients with early Parkinson’s showed retinal thinning as measured by optical coherence tomography (OCT) that correlated with both disease severity and nigral dopaminergic degeneration, reported Jee-Young Lee, MD, PhD, of the Seoul National University Boramae Medical Center, and colleagues in Neurology.

“Our study is the first to show a link between the thinning of the retina and a known sign of the progression of the disease — the loss of brain cells that produce dopamine,” Lee said in a statement.

“We also found the thinner the retina, the greater the severity of disease. These discoveries may mean that neurologists may eventually be able to use a simple eye scan to detect Parkinson’s disease in its earliest stages, before problems with movement begin.”

Retinal pathology has been tied to other neurodegenerative disorders including dementia. In previous studies, retinal nerve fiber layer thickness has been linked to Parkinson’s disease, and OCT is a potential PD biomarker.

The search for a definitive Parkinson’s biomarker has been extensive and includes clinical (anosmia; REM behavior disorder), genetic (GBA mutation; LRRK2 mutation), and biochemical (blood and cerebrospinal fluid) techniques, along with positron emission tomography (PET), magnetic resonance imaging (MRI), and single photon emission computed tomography (SPECT) imaging.

No biomarker has been validated for clinical practice, noted Jamie Adams, MD, of the University of Rochester Medical Center in New York, and Chiara La Morgia, MD, PhD, of the University of Bologna in Italy, in an accompanying editorial: “Because of the complexity of the disease, combining biomarkers from different categories is likely the best strategy to accurately predict PD status and progression.”

In this analysis, Lee and colleagues studied 49 Parkinson’s patients with an average age of 69, along with 54 age-matched controls, including only early-stage, drug-naïve PD patients without ophthalmologic disease.

The researchers used high-resolution OCT to measure retinal nerve fiber layer thickness, microperimetry to measure retinal function, and dopamine transporter analysis to measure N(3-[18F]fluoropropyl)-2-carbomethoxy-3-(4-iodophenyl) nortropane uptake in the basal ganglia. Retinal layer thickness and volume were measured and compared in PD patients and controls.

Retinal thinning was found in the inferior and temporal perifoveal sectors of the PD patients, particularly the inner plexiform and ganglion cell layers, along with an association between retinal thinning and dopaminergic loss in the left substantia nigra. The team also reported an inverse association between inner retinal thickness in the inferior perifoveal sector and disease severity (Hoehn and Yahr stage), and a positive correlation between macular sensitivity and retinal layer thickness.

“Overall, these data support the presence of an association between retinal thinning and dopaminergic loss in PD,” said Adams and La Morgia. “Inner retinal thinning in individuals with PD has been reported in previous studies, but this is the first study that demonstrates a correlation between inner retinal thinning and nigral dopaminergic loss.”

“These findings may point to a pathologic connection between the retina and basal ganglia in PD and are in line with previous studies reporting asymmetric retinal nerve fiber layer loss, more evident in the eye contralateral to the most affected body side.”

The results need to be interpreted with caution, Lee and co-authors noted. Retina analysis was limited to the macular area in this research. Studies with larger numbers of Parkinson’s patients are needed to confirm the findings. And this study was a cross-sectional analysis, so correlations between retinal changes and PD severity need to be established over time.

But if the findings are confirmed, “retina scans may not only allow earlier treatment of Parkinson’s disease, but more precise monitoring of treatments that could slow progression of the disease as well,” Lee said.

https://www.medpagetoday.com/neurology/parkinsonsdisease/74575


Age-related macular degeneration, diabetic retinopathy and glaucoma were all associated with a higher risk of developing Alzheimer’s disease in a new study.

by Rich Haridy

A new study has found an interesting correlation between several degenerative eye diseases and the onset of Alzheimer’s disease. No mechanism explaining the connection has been proposed at this stage but it is thought these eye conditions may help physicians identify patients at risk of developing Alzheimer’s at a stage before major symptoms appear.

The five-year study followed almost 4,000 patients over the age of 65, all without clinically diagnosed Alzheimer’s disease at the time of enrolment. After five years, 792 subjects were officially diagnosed with Alzheimer’s. The study found that those subjects with age-related macular degeneration, diabetic retinopathy or glaucoma, were 40 to 50 percent more likely to develop Alzheimer’s compared to patients without those specific conditions. No correlation between cataracts and an increased risk of Alzheimer’s were found.

“We don’t mean people with these eye conditions will get Alzheimer’s disease,” cautions Cecilia Lee, lead researcher on the study. “The main message from this study is that ophthalmologists should be more aware of the risks of developing dementia for people with these eye conditions and primary care doctors seeing patients with these eye conditions might be more careful on checking on possible dementia or memory loss.”

The researchers are clear that there are no definable causal connections between these eye conditions and Alzheimer’s at this stage, but the study does highlight the potential of using the eye as a way to better understand what is going on in the brain. Intriguingly, this isn’t the first bit of research that has found correlations between signs detected in the eye and the onset of Alzheimer’s disease.

Last year, a team from Cedars-Sinai Medical Center revealed that the same type of amyloid protein deposits found in the brain, and hypothesized as a major pathogenic cause of Alzheimer’s, can also be detected on the retina. That research suggested a possible investigational eye scan could become an effective early screening device for the disease.

While this new study does not at all cross over with last year’s research, and there is no implication that amyloid proteins play a part in these degenerative eye diseases, it does add to a fascinating growing body of work that highlights the eye’s role in helping offer a deeper insight into the cognitive health of our brain.

The research was published in the journal Alzheimer’s & Dementia.

https://newatlas.com/eye-disease-alzheimers-connection/55823/


Illustration of how pH imbalance inside endosomes may contribute to Alzheimer’s disease

Johns Hopkins Medicine scientists say they have found new evidence in lab-grown mouse brain cells, called astrocytes, that one root of Alzheimer’s disease may be a simple imbalance in acid-alkaline—or pH—chemistry inside endosomes, the nutrient and chemical cargo shuttles in cells.

Astrocytes work to clear so-called amyloid beta proteins from the spaces between neurons, but decades of evidence has shown that if the clearing process goes awry, amyloid proteins pile up around neurons, leading to the characteristic amyloid plaques and nerve cell degeneration that are the hallmarks of memory-destroying Alzheimer’s disease.

The new study, described online June 26 in Proceedings of the National Academy of Sciences, also reports that the scientists gave drugs called histone deacetylase (HDAC) inhibitors to pH-imbalanced mice cells engineered with a common Alzheimer’s gene variant. The experiment successfully reversed the pH problem and improved the capacity for amyloid beta clearance.

HDAC inhibitors are approved by the U.S. Food and Drug Administration for use in people with certain types of blood cancers, but not in people with Alzheimer’s. They cautioned that most HDAC inhibitors cannot cross the blood-brain barrier, a significant challenge to the direct use of the drugs for brain disorders. The scientists say they are planning additional experiments to see if HDAC inhibitors have a similar effect in lab-grown astrocytes from Alzheimer’s patients, and that there is the potential to design HDAC inhibitors that can cross the barrier.

However, the scientists caution that even before those experiments can happen, far more research is needed to verify and explain the precise relationship between amyloid proteins and Alzheimer’s disease, which affects an estimated 50 million people worldwide. To date, there is no cure and no drugs that can predictably or demonstrably prevent or reverse Alzheimer’s disease symptoms.

“By the time Alzheimer’s disease is diagnosed, most of the neurological damage is done, and it’s likely too late to reverse the disease’s progression,” says Rajini Rao, Ph.D., professor of physiology at the Johns Hopkins University School of Medicine. “That’s why we need to focus on the earliest pathological symptoms or markers of Alzheimer’s disease, and we know that the biology and chemistry of endosomes is an important factor long before cognitive decline sets in.”

Nearly 20 years ago, scientists at Johns Hopkins and New York University discovered that endosomes, circular compartments that ferry cargo within cells, are larger and far more abundant in brain cells of people destined to develop Alzheimer’s disease. This hinted at an underlying problem with endosomes that could lead to an accumulation of amyloid protein in spaces around neurons, says Rao.

To shuttle their cargo from place to place, endosomes use chaperones—proteins that bind to specific cargo and bring them back and forth from the cell’s surface. Whether and how well this binding occurs depends on the proper pH level inside the endosome, a delicate balance of acidity and alkalinity, or acid and base, that makes endosomes float to the surface and slip back down into the cell.

Embedded in the endosome membrane are proteins that shuttle charged hydrogen atoms, known as protons, in and out of endosomes. The amount of protons inside the endosome determines its pH.

When fluids in the endosome become too acidic, the cargo is trapped within the endosome deep inside the cell. When the endosome contents are more alkaline, the cargo lingers at the cell’s surface for too long.

To help determine whether such pH imbalances occur in Alzheimer’s disease, Johns Hopkins graduate student Hari Prasad scoured scientific studies of Alzheimer’s disease looking for genes that were dialed down in diseased brains compared with normal ones. Comparing a dataset of 15 brains of Alzheimer’s disease patients with 12 normal ones, he found that 10 of the 100 most frequently down-regulated genes were related to the proton flow in the cell.

In another set of brain tissue samples from 96 people with Alzheimer’s disease and 82 without it, gene expression of the proton shuttle in endosomes, known as NHE6, was approximately 50 percent lower in people with Alzheimer’s disease compared with those with normal brains. In cells grown from people with Alzheimer’s disease and in mouse astrocytes engineered to carry a human Alzheimer’s disease gene variant, the amount of NHE6 was about half the amount found in normal cells.

To measure the pH balance within endosomes without breaking open the astrocyte, Prasad and Rao used pH sensitive probes that are absorbed by endosomes and emit light based on pH levels. They found that mouse cell lines containing the Alzheimer’s disease gene variant had more acidic endosomes (average of 5.37 pH) than cell lines without the gene variant (average of 6.21 pH).

“Without properly functioning NHE6, endosomes become too acidic and linger inside astrocytes, avoiding their duties to clear amyloid beta proteins,” says Rao.

While it’s likely that changes in NHE6 happen over time in people who develop sporadic Alzheimer’s disease, people who have inherited mutations in NHE6 develop what’s known as Christianson syndrome in infancy and have rapid brain degeneration.

Prasad and Rao also found that a protein called LRP1, which picks up amyloid beta proteins outside the astrocyte and delivers them to endosomes, was half as abundant on the surface of lab grown mouse astrocytes engineered with a human gene variant called APOE4, commonly linked to Alzheimer’s disease.

Looking for ways to restore the function of NHE6, Prasad searched databases of yeast studies to find that HDAC inhibitors tend to increase expression of the NHE6 gene in yeast. This gene is very similar across species, including flies, mice and humans.

Prasad and Rao tested nine types of HDAC inhibitors on cell cultures of mouse astrocytes engineered with the APOE4 gene variant. Broad-spectrum HDAC inhibitors increased NHE6 expression to levels associated with mouse astrocytes that did not have the Alzheimer’s gene variant. They also found that HDAC inhibitors corrected the pH imbalance inside endosomes and restored LRP1 to the astrocyte surface, resulting in efficient clearance of amyloid beta protein.

More information: Hari Prasad et al. Amyloid clearance defect in ApoE4 astrocytes is reversed by epigenetic correction of endosomal pH, Proceedings of the National Academy of Sciences (2018). DOI: 10.1073/pnas.1801612115

https://medicalxpress.com/news/2018-08-ph-imbalance-brain-cells-contribute.html

by SUKANYA CHARUCHANDRA

Even when Parkinson’s patients don’t have mutations in a gene called LRRK2, more of the active enzyme the gene generates is present in their brains than in healthy brains, researchers reported last week (July 25) in Science Translational Medicine. The finding suggests that LRRK2 inhibitors could help to reduce harmful effects of the enzyme in the vast majority of Parkinson’s patients.

“This is the really interesting bit of data … the demonstration that when you look in the brains of individuals with idiopathic Parkinson’s [where the cause is unknown], that there’s evidence that LRRK2 is activated,” says Patrick Lewis, who studies Parkinson’s disease at University College London and the University of Reading in the UK. He has collaborated with one of the paper’s coauthors but was not involved in this study.

Ten percent of Parkinson’s cases have known genetic causes. Three percent of cases are due to a mutation in LRRK2, the gene encoding the LRRK2 enzyme. The enzyme is highly active in Parkinson’s patients with a mutated LRRK2 gene, and the increased enzyme activity has been linked to the development of the disease.

In the new study, Timothy Greenamyre, a professor of neurology at the University of Pittsburgh, and his team wanted to look at the level of active LRRK2 in patients without an LRRK2 mutation. “Because [LRRK2] is a low-abundance protein, people have had difficulty detecting it,” Greenamyre says. To spot active LRRK2, the researchers first developed two versions of an assay: the first detects the active enzyme and the second, the inactive enzyme. In the first detection method, researchers used two different antibodies, one that binds to a specific subunit that acts as a known indicator of the active enzyme and another that binds to a different proximal portion of it. When both antibodies bind successfully, their close contact generates a fluorescent signal—a sign of active LRRK2. The second method detects a protein known to regulate LRRK2 activity. Higher levels of this protein indicate lower levels of available active LRRK2.

The team used the assay on postmortem brain tissue from Parkinson’s disease patients and from healthy individuals. The researchers observed higher levels of the active LRRK2 enzyme in substantia nigra dopamine-producing neurons—the death of which indicate neurodegenerative disease—in the brain tissue of Parkinson’s patients’ with no mutation in the LRRK2 gene than in healthy brain tissue.

“We have been wondering for a very long time whether LRRK2 plays a role in sporadic Parkinson’s disease,” says Mark Cookson, who studies the neurodegenerative disorder in the National Institutes of Health’s Laboratory of Neurogenetics. He has collaborated with Greenamyre before but was not involved in this work. According to Cookson, this study provides “defensive evidence” of LRRK2’s role in the disease, even in patients without a mutation in the gene.

In the next set of experiments, Greenamyre and his colleagues wanted to see if active LRRK2 turned up in two rat models of Parkinson’s disease. In the first rodent model, the animals were given the toxin rotenone to induce symptoms of the disease. Even without a mutation in the LRRK2 gene, the rats had higher levels of active LRRK2 protein. In the rats’ brains, the active LRRK2 enzymes were linked with clumps of another protein, α-synuclein. The clumps eventually help form Lewy bodies, a characteristic feature of Parkinson’s brains. In the second rodent model, the researchers overexpressed wildtype α-synuclein in the rats’ substantia nigra, which caused levels of active LRRK2 to rise. When the group treated the rotenone-rodent model with a drug that inhibited the LRRK2 protein, the number of clumps and Lewy bodies dropped.

The team also observed higher levels of reactive oxygen species (ROS)—chemically responsive molecules such as peroxides—in the brains of both rat models of Parkinson’s disease. As a result, Greenamyre and his colleagues wanted to see if directly increasing ROS led to more active LRRK2. In a third set of experiments, the team dosed healthy human cell lines with hydrogen peroxide and found the addition of the ROS increased the levels of LRRK2. A spike in ROS levels, the researchers suggest, activates LRRK2, which in turn aids in the development of some classic Parkinson’s features. Blocking the production of ROS resulted in a drop in active LRRK2. The result gives clues to an environmental cause for Parkinson’s disease.

Pharmaceutical companies are already developing LRRK2 inhibitors that can help the small percentage of Parkinson’s patients that have a mutation in the LRRK2 gene. “The inhibitors may benefit patients not only with the mutation but also patients who have idiopathic diseases—they’re much more common,” says coauthor Dario Alessi, a professor who studies signaling pathways in neurodegenerative disorders at the University of Dundee in the UK.

LRRK2 inhibitors, the researchers note, cause mild, yet reversible side effects, in the lungs and kidneys.

R.D. Maio et al., “LRRK2 activation in idiopathic Parkinson’s disease,” Science Translational Medicine, doi:10.1126/scitranslmed.aar5429, 2018.

https://www.the-scientist.com/news-opinion/key-enzyme-active-in-brains-of-patients-without-parkinsons-mutation-64599

New evidence suggests a mechanism by which progressive accumulation of Tau protein in brain cells may lead to Alzheimer’s disease. Scientists studied more than 600 human brains and fruit fly models of Alzheimer’s disease and found the first evidence of a strong link between Tau protein within neurons and the activity of particular DNA sequences called transposable elements, which might trigger neurodegeneration. The study appears in the journal Cell Reports.

“One of the key characteristics of Alzheimer’s disease is the accumulation of Tau protein within brain cells, in combination with progressive cell death,” said corresponding author Dr. Joshua Shulman, associate professor of neurology, neuroscience and molecular and human genetics at Baylor College of Medicine and investigator at the Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital. “In this study we provide novel insights into how accumulation of Tau protein may contribute to the development of Alzheimer’s disease.”

Although scientists have studied for years what happens when Tau forms aggregates inside neurons, it still is not clear why brain cells ultimately die. One thing that scientists have noticed is that neurons affected by Tau accumulation also appear to have genomic instability.

“Genomic instability refers to an increased tendency to have alterations in the genetic material, DNA, such as mutations or other impairments. This means that the genome is not functioning correctly. Genomic instability is known to be a major driving force behind other diseases such as cancer,” Shulman said. “Our study focused on a new possible causal connection between Tau accumulation within neurons and the resulting genomic instability in Alzheimer’s disease.”

Enter transposable elements
Previous studies of brain tissues from patients with other neurologic diseases and of animal models have suggested that the neurons not only present with genomic instability, but also with activation of transposable elements.

“Transposable elements are short pieces of DNA that do not seem to contribute to the production of proteins that make cells function. They behave in a way similar to viruses; they can make copies of themselves that are inserted within the genome and this can create mutations that lead to disease,” Shulman said. “Although most transposable elements are dormant or dysfunctional, some may become active in human brains late in life or in disease. That’s what led us to look specifically at Alzheimer’s disease and the possible association between Tau accumulation and activated transposable elements.”

Shulman and his colleagues began their investigations by studying more than 600 human brains from a population study run by co-author Dr. David Bennett at Rush University Medical Center in Chicago. This population study follows participants throughout their lives and at death, allowing the researchers to examine their brains in detail postmortem. One of the evaluations is the amount of Tau accumulation across many brain regions. In addition, co-author Dr. Philip De Jager at the Broad Institute and Columbia University comprehensively profiled gene expression in the same brains.

“With this large amount of data, we looked to identify signatures of active transposable elements, but this was not easy,” Shulman said. “We therefore reached out to Dr. Zhandong Liu, a co-author in this study, and together we developed a new software tool to detect signatures of active transposable elements from postmortem human brains. Then we conducted a statistical analysis in which we compared the amount of active transposable elements signatures with the amount of Tau accumulation, brain by brain.” Liu also is assistant professor of pediatrics – neurology at Baylor and a member of the Dan L Duncan Comprehensive Cancer Center.

The researchers found a strong link between the amount of Tau accumulation in neurons and detectable activity of transposable elements.

“We identified individual transposable elements that were active when Tau aggregates were present. Surprisingly, we also found evidence that the activation of transposable elements was quite broad across the genome,” Shulman said.

Other research has shown that Tau may disrupt the tightly packed architecture of the genome. It is believed that tightly packed DNA limits gene activation, while opening up the DNA may promote it. Keeping the DNA tightly packed may be an important mechanism to suppress the activity of transposable elements that lead to disease.

“The fact that Tau aggregates can affect that architecture of the genome may be one possible mechanism by which transposable elements are activated in Alzheimer’s disease,” Shulman said. “However, our studies in human brains only establish an association between Tau accumulation and activation of transposable elements. To determine whether Tau accumulation could in fact cause transposable element activation, we conducted studies with a fruit fly model of Alzheimer’s disease.”

In this fruit fly model of the disease, the researchers found that triggering Tau changes similar to those observed in human brains resulted in the activation of fruit fly transposable elements, strongly suggesting that Tau aggregates that disrupt the architecture of the genome can potentially mediate the activation of transposable elements and ultimately cause neurodegeneration.

“We think our experiments reveal new and potentially important insights relevant for understanding Alzheimer’s disease mechanisms,” Shulman said. “There is still a lot of work to be done, but by presenting our results we hope we can stimulate others in the research community to help work on this problem.”

https://www.bcm.edu/news/neurology/research-links-tau-aggregates-cell-death