Posts Tagged ‘neurodegeneration’

by Debora MacKenzie

We may finally have found a long-elusive cause of Alzheimer’s disease: Porphyromonas gingivalis, the key bacteria in chronic gum disease. That’s bad, as gum disease affects around a third of all people. But the good news is that a drug that blocks the main toxins of P. gingivalis is entering major clinical trials this year, and research published this week shows it might stop and even reverse Alzheimer’s. There could even be a vaccine.

Alzheimer’s is one of the biggest mysteries in medicine. As populations have aged, dementia has skyrocketed to become the fifth biggest cause of death worldwide. Alzheimer’s constitutes some 70 per cent of these cases and yet, we don’t know what causes it. The disease often involves the accumulation of proteins called amyloid and tau in the brain, and the leading hypothesis has been that the disease arises from defective control of these two proteins. But research in recent years has revealed that people can have amyloid plaques without having dementia. So many efforts to treat Alzheimer’s by moderating these proteins have failed, and the hypothesis has now been seriously questioned.

Indeed, evidence has been growing that the function of amyloid proteins may be as a defence against bacteria, leading to a spate of recent studies looking at bacteria in Alzheimer’s, particularly those that cause gum disease, which is known to be a major risk factor for the condition.

Bacteria involved in gum disease and other illnesses have been found after death in the brains of people who had Alzheimer’s, but until now, it hasn’t been clear whether these bacteria caused the disease or simply got in via brain damage caused by the condition.

Gum disease link

Multiple research teams have been investigating P. gingivalis, and have so far found that it invades and inflames brain regions affected by Alzheimer’s; that gum infections can worsen symptoms in mice genetically engineered to have Alzheimer’s; and that it can cause Alzheimer’s-like brain inflammation, neural damage, and amyloid plaques in healthy mice.

“When science converges from multiple independent laboratories like this, it is very compelling,” says Casey Lynch of Cortexyme, a pharmaceutical firm in San Francisco, California.

In the new study, Cortexyme have now reported finding the toxic enzymes – called gingipains – that P. gingivalis uses to feed on human tissue in 96 per cent of the 54 Alzheimer’s brain samples they looked at, and found the bacteria themselves in all three Alzheimer’s brains whose DNA they examined.

“This is the first report showing P. gingivalis DNA in human brains, and the associated gingipains, co-lococalising with plaques,” says Sim Singhrao, of the University of Central Lancashire, UK. Her team previously found that P. gingivalis actively invades the brains of mice with gum infections. She adds that the new study is also the first to show that gingipains slice up tau protein in ways that could allow it to kill neurons, causing dementia.

The bacteria and its enzymes were found at higher levels in those who had experienced worse cognitive decline, and had more amyloid and tau accumulations. The team also found the bacteria in the spinal fluid of living people with Alzheimer’s, suggesting that this technique may provide a long-sought after method of diagnosing the disease.

When the team gave P. gingivalis gum disease to mice, it led to brain infection, amyloid production, tangles of tau protein, and neural damage in the regions and nerves normally affected by Alzheimer’s.

Cortexyme had previously developed molecules that block gingipains. Giving some of these to mice reduced their infections, halted amyloid production, lowered brain inflammation and even rescued damaged neurons.

The team found that an antibiotic that killed P. gingivalis did this too, but less effectively, and the bacteria rapidly developed resistance. They did not resist the gingipain blockers. “This provides hope of treating or preventing Alzheimer’s disease one day,” says Singhrao.

New treatment hope

Some brain samples from people without Alzheimer’s also had P. gingivalis and protein accumulations, but at lower levels. We already know that amyloid and tau can accumulate in the brain for 10 to 20 years before Alzheimer’s symptoms begin. This, say the researchers, shows P. gingivalis could be a cause of Alzheimer’s, but it is not a result.

Gum disease is far more common than Alzheimer’s. But “Alzheimer’s strikes people who accumulate gingipains and damage in the brain fast enough to develop symptoms during their lifetimes,” says Lynch. “We believe this is a universal hypothesis of pathogenesis.”

Cortexyme reported in October that the best of their gingipain blockers had passed initial safety tests in people, and entered the brain. It also seemed to improve participants with Alzheimer’s. Later this year the firm will launch a larger trial of the drug, looking for P. gingivalis in spinal fluid, and cognitive improvements, before and after.

They also plan to test it against gum disease itself. Efforts to fight that have led a team in Melbourne to develop a vaccine for P. gingivalis that started tests in 2018. A vaccine for gum disease would be welcome – but if it also stops Alzheimer’s the impact could be enormous.

Journal reference: Science Advances

https://www.newscientist.com/article/2191814-we-may-finally-know-what-causes-alzheimers-and-how-to-stop-it/

Advertisements


Coloured positron emission tomography (PET, centre) and computed tomography (CT, left) scans of the brain of a 62-year-old woman with Alzheimer’s disease.

By Pam Belluck

In dementia research, so many paths have led nowhere that any glimmer of optimism is noteworthy.

So some experts are heralding the results of a large new study, which found that people with hypertension who received intensive treatment to lower their blood pressure were less likely than those receiving standard blood pressure treatment to develop minor memory and thinking problems that often progress to dementia.

The study, published Monday in JAMA, is the first large, randomized clinical trial to find something that can help many older people reduce their risk of mild cognitive impairment — an early stage of faltering function and memory that is a frequent precursor to Alzheimer’s disease and other dementias.

The results apply only to those age 50 or older who have elevated blood pressure and who do not have diabetes or a history of stroke. But that’s a condition affecting a lot of people — more than 75 percent of people over 65 have hypertension, the study said. So millions might eventually benefit by reducing not only their risk of heart problems but of cognitive decline, too.

“It’s kind of remarkable that they found something,” said Dr. Kristine Yaffe, a professor of psychiatry and neurology at University of California San Francisco, who was not involved in the research. “I think it actually is very exciting because it tells us that by improving vascular health in a comprehensive way, we could actually have an effect on brain health.”

The research was part of a large cardiovascular study called Sprint, begun in 2010 and involving more than 9,000 racially and ethnically diverse people at 102 sites in the United States. The participants had hypertension, defined as a systolic blood pressure (the top number) from 130 to 180, without diabetes or a history of stroke.

These were people who could care for themselves, were able to walk and get themselves to doctors’ appointments, said the principal investigator, Dr. Jeff D. Williamson, chief of geriatric medicine and gerontology at Wake Forest School of Medicine.

The primary goal of the Sprint study was to see if people treated intensively enough that their blood pressure dropped below 120 would do better than people receiving standard treatment which brought their blood pressure just under 140. They did — so much so that in 2015, the trial was stopped because the intensively treated participants had significantly lower risk of cardiovascular events and death that it would have been unethical not to inform the standard group of the benefit of further lowering their blood pressure.

But the cognitive arm of the study, called Sprint Mind, continued to follow the participants for three more years even though they were no longer monitored for whether they continued with intensive blood pressure treatment. About 8,500 participants received at least one cognitive assessment.

The primary outcome researchers measured was whether patients developed “probable dementia.” Fewer patients did so in the group whose blood pressure was lowered to 120. But the difference — 149 people in the intensive-treatment group versus 176 people in the standard-treatment group — was not enough to be statistically significant.

But in the secondary outcome — developing mild cognitive impairment or MCI — results did show a statistically significant difference. In the intensive group, 287 people developed it, compared to 353 people in the standard group, giving the intensive treatment group a 19 percent lower risk of mild cognitive impairment, Dr. Williamson said.

Because dementia often develops over many years, Dr. Williamson said he believes that following the patients for longer would yield enough cases to definitively show whether intensive blood pressure treatment helps prevent dementia too. To find out, the Alzheimer’s Association said Monday it would fund two more years of the study.

“Sprint Mind 2.0 and the work leading up to it offers genuine, concrete hope,” Maria C. Carrillo, the association’s chief science officer, said in a statement. “MCI is a known risk factor for dementia, and everyone who experiences dementia passes through MCI. When you prevent new cases of MCI, you are preventing new cases of dementia.”

Dr. Yaffe said the study had several limitations and left many questions unanswered. It’s unclear how it applies to people with diabetes or other conditions that often accompany high blood pressure. And she said she would like to see data on the participants older than 80, since some studies have suggested that in people that age, hypertension might protect against dementia.

The researchers did not specify which type of medication people took, although Dr. Williamson said they plan to analyze by type to see if any of the drugs produced a stronger cognitive benefit. Side effects of the intensive treatment stopped being monitored after the main trial ended, but Dr. Williamson said the biggest negative effect was dehydration.

Dr. Williamson said the trial has changed how he treats patients, offering those with blood pressure over 130 the intensive treatment. “I’ll tell them it will give you a 19 percent lower chance of developing early memory loss,” he said.

Dr. Yaffe is more cautious about changing her approach. “I don’t think we’re ready to roll it out,” she said. “It’s not like I’m going to see a patient and say ‘Oh my gosh your blood pressure is 140; we need to go to 120.’ We really need to understand much more about how this might differ by your age, by the side effects, by maybe what else you have.”

Still, she said, “I do think the take-home message is that blood pressure and other measures of vascular health have a role in cognitive health,” she said. “And nothing else has worked.”

181307_web-1

Whiile human genetic mutations are involved in a small number of Parkinson’s disease (PD) cases, the vast majority of cases are of unknown environmental causes, prompting enormous interest in identifying environmental risk factors involved. The link between Helicobacter pylori (H. pylori) and gastric ulcers has been known for several decades, but new evidence suggests that this harmful bacterium may play a role in PD as well. A new review in the Journal of Parkinson’s Disease summarizes the current literature regarding the link between H. pylori and PD and explores the possible mechanisms behind the association.

In a comprehensive review of prior studies, investigators uncovered four key findings:

People with PD are 1.5-3-fold more likely to be infected with H. pylori than people without PD.
H. pylori-infected PD patients display worse motor functions than H. pylori-negative PD patients.
Eradication of H. pylori improved motor function in PD patients over PD patients whose H. pylori was not eradicated.
Eradication of H. pylori improved levodopa absorption in PD patients compared to PD patients whose H. pylori was not eradicated.
“This is an in-depth and comprehensive review that summarizes all the major papers in the medical literature on Parkinson’s disease and H. pylori, the common stomach bacterium that causes gastritis, ulcers and stomach cancer,” explained lead investigator David J. McGee, PhD, Associate Professor, Department of Microbiology and Immunology, LSU Health Sciences Center-Shreveport, Shreveport, LA, USA. “Our conclusion is that there is a strong enough link between the H. pylori and Parkinson’s disease that additional studies are warranted to determine the possible causal relationship.”

Investigators also analyzed existing studies to try and find possible testable pathways between the bacterial infection and Parkinson’s to lay the groundwork for future research. They found four main possible explanations for the association:

Bacterial toxins produced by H. pylori may damage neurons.

The infection triggers a massive inflammatory response that causes damage to the brain.

H. pylori may disrupt the normal gut microbial flora.

The bacteria might interfere with the absorption properties of levodopa, the medication commonly used to treat the symptoms of Parkinson’s disease.

The onset of PD is often preceded by gastrointestinal dysfunction, suggesting that the condition might originate in the gut and spread to the brain along the brain-gut axis. In the review, investigators note that this has been documented in rats.

Screening PD patients for the presence of H. pylori and subsequent treatment if positive with anti-H. pylori triple drug therapy, may contribute to improved levodopa absorption and ultimately improvement of PD symptoms, potentially leading to a longer life span in patients with PD.

“Evidence for a strong association among H. pylori chronic infection, peptic ulceration and exacerbation of PD symptoms is accumulating,” concluded Dr. McGee.

“However, the hypotheses that H. pylori infection is a predisposing factor, disease progression modifier, or even a direct cause of PD remain largely unexplored. This gut pathology may be multifactorial, involving H. pylori, intestinal microflora, inflammation, misfolding of alpha-synuclein in the gut and brain, cholesterol and other metabolites, and potential neurotoxins from bacteria or dietary sources. Eradication of H. pylori or return of the gut microflora to the proper balance in PD patients may ameliorate gut symptoms, L-dopa malabsorption, and motor dysfunction.”

https://scienmag.com/eradicating-helicobacter-pylori-infections-may-be-a-key-treatment-for-parkinsons-disease/

zombie-neurons-identified-in-alzheimers-brains-309765
Senescent cells (represented here in green) no longer function but can broadcast inflammatory signals to the cells around them. These cells are implicated in a number of age-related diseases. Credit: The Mayo Clinic

0Q9B6965
Darren Baker, Ph.D., a Mayo Clinic molecular biologist and senior author of the paper, and first author Tyler Bussian, a Mayo Clinic Graduate School of Biomedical Sciences student.

Zombie cells are the ones that can’t die but are equally unable to perform the functions of a normal cell. These zombie, or senescent, cells are implicated in a number of age-related diseases. And with a new letter in Nature, Mayo Clinic researchers have expanded that list.

In a mouse model of brain disease, scientists report that senescent cells accumulate in certain brain cells prior to cognitive loss. By preventing the accumulation of these cells, they were able to diminish tau protein aggregation, neuronal death and memory loss.

“Senescent cells are known to accumulate with advancing natural age and at sites related to diseases of aging, including osteoarthritis; atherosclerosis; and neurodegenerative diseases, such as Alzheimer’s and Parkinson’s,” says Darren Baker, Ph.D., a Mayo Clinic molecular biologist and senior author of the paper. “In prior studies, we have found that elimination of senescent cells from naturally aged mice extends their healthy life span.”

In the current study, the team used a model that imitates aspects of Alzheimer’s disease.

“We used a mouse model that produces sticky, cobweb like tangles of tau protein in neurons and has genetic modifications to allow for senescent cell elimination,” explains first author Tyler Bussian, a Mayo Clinic Graduate School of Biomedical Sciences student who is part of Dr. Baker’s lab. “When senescent cells were removed, we found that the diseased animals retained the ability to form memories, eliminated signs of inflammation, did not develop neurofibrillary tangles, and had maintained normal brain mass.” They also report that pharmacological intervention to remove senescent cells modulated the clumping of tau proteins.

Also, the team was able to identify the specific type of cell that became senescent, says Dr. Baker.

“Two different brain cell types called ‘microglia’ and ‘astrocytes’ were found to be senescent when we looked at brain tissue under the microscope,” says Bussian. “These cells are important supporters of neuronal health and signaling, so it makes sense that senescence in either would negatively impact neuron health.”

The finding was somewhat surprising, explains Dr. Baker, because at the time their research started, a causal link between senescent cells and neurodegenerative disease had not been established.

“We had no idea whether senescent cells actively contributed to disease pathology in the brain, and to find that it’s the astrocytes and microglia that are prone to senescence is somewhat of a surprise, as well,” says Dr. Baker.

In terms of future work, Dr. Baker explains that this research lays out the best-case scenario, where prevention of damage to the brain avoided the disease state. “Clearly, this same approach cannot be applied clinically, so we are starting to treat animals after disease establishment and working on new models to examine the specific molecular alterations that occur in the affected cells,” says Dr. Baker.

In addition to Dr. Baker and Bussian, the other authors are Asef Aziz, a medical student formerly at Mayo Clinic; Charlton Meyer, Mayo Clinic; Barbara Swenson, Ph.D., Mayo Clinic; and Jan van Deursen, Ph.D., Mayo Clinic. Dr. van Deursen is the Vita Valley Professor of Cellular Senescence. Drs. Baker and van Deursen are inventors on patents licensed to Unity Biotechnology by Mayo Clinic, and Dr. van Deursen is a co-founder of Unity Biotechnology.

Funding for this research was provided by the Ellison Medical Foundation, the Glenn Foundation for Medical Research, the National Institutes of Health, the Mayo Clinic Children’s Research Center, and the Alzheimer’s Disease Research Center of Mayo Clinic.

https://newsnetwork.mayoclinic.org/discussion/senescent-cells-found-in-brains-of-mice-prior-to-cognitive-loss/

germ_custom-ce83850a07c80ed6e717ea56370b3c5140eb2f3f-s800-c85

by BRET STETKA

Dr. Leslie Norins is willing to hand over $1 million of his own money to anyone who can clarify something: Is Alzheimer’s disease, the most common form of dementia worldwide, caused by a germ?

By “germ” he means microbes like bacteria, viruses, fungi and parasites. In other words, Norins, a physician turned publisher, wants to know if Alzheimer’s is infectious.

It’s an idea that just a few years ago would’ve seemed to many an easy way to drain your research budget on bunk science. Money has poured into Alzheimer’s research for years, but until very recently not much of it went toward investigating infection in causing dementia.

But this “germ theory” of Alzheimer’s, as Norins calls it, has been fermenting in the literature for decades. Even early 20th century Czech physician Oskar Fischer — who, along with his German contemporary Dr. Alois Alzheimer, was integral in first describing the condition — noted a possible connection between the newly identified dementia and tuberculosis.

If the germ theory gets traction, even in some Alzheimer’s patients, it could trigger a seismic shift in how doctors understand and treat the disease.

For instance, would we see a day when dementia is prevented with a vaccine, or treated with antibiotics and antiviral medications? Norins thinks it’s worth looking into.

Norins received his medical degree from Duke in the early 1960s, and after a stint at the Centers for Disease Control and Prevention he fell into a lucrative career in medical publishing. He eventually settled in an admittedly aged community in Naples, Fla., where he took an interest in dementia and began reading up on the condition.

After scouring the medical literature he noticed a pattern.

“It appeared that many of the reported characteristics of Alzheimer’s disease were compatible with an infectious process,” Norins tells NPR. “I thought for sure this must have already been investigated, because millions and millions of dollars have been spent on Alzheimer’s research.”

But aside from scattered interest through the decades, this wasn’t the case.

In 2017, Norins launched Alzheimer’s Germ Quest Inc., a public benefit corporation he hopes will drive interest into the germ theory of Alzheimer’s, and through which his prize will be distributed. A white paper he penned for the site reads: “From a two-year review of the scientific literature, I believe it’s now clear that just one germ — identity not yet specified, and possibly not yet discovered — causes most AD. I’m calling it the ‘Alzheimer’s Germ.’ ”

Norins is quick to cite sources and studies supporting his claim, among them a 2010 study published in the Journal of Neurosurgery showing that neurosurgeons die from Alzheimer’s at a nearly 2 1/2 times higher rate than they do from other disorders.

Another study from that same year, published in The Journal of the American Geriatric Society, found that people whose spouses have dementia are at a 1.6 times greater risk for the condition themselves.

Contagion does come to mind. And Norins isn’t alone in his thinking.

In 2016, 32 researchers from universities around the world signed an editorial in the Journal of Alzheimer’s Disease calling for “further research on the role of infectious agents in [Alzheimer’s] causation.” Based on much of the same evidence Norins encountered, the authors concluded that clinical trials with antimicrobial drugs in Alzheimer’s are now justified.

NPR reported on an intriguing study published in Neuron in June that suggested that viral infection can influence the progression of Alzheimer’s. Led by Mount Sinai genetics professor Joel Dudley, the work was intended to compare the genomes of healthy brain tissue with that affected by dementia.

But something kept getting in the way: herpes.

Dudley’s team noticed an unexpectedly high level of viral DNA from two human herpes viruses, HHV-6 and HHV-7. The viruses are common and cause a rash called roseola in young children (not the sexually transmitted disease caused by other strains).

Some viruses have the ability to lie dormant in our neurons for decades by incorporating their genomes into our own. The classic example is chickenpox: A childhood viral infection resolves and lurks silently, returning years later as shingles, an excruciating rash. Like it or not, nearly all of us are chimeras with viral DNA speckling our genomes.

But having the herpes viruses alone doesn’t mean inevitable brain decline. After all, up to 75 percent of us may harbor HHV-6 .

But Dudley also noticed that herpes appeared to interact with human genes known to increase Alzheimer’s risk. Perhaps, he says, there is some toxic combination of genetic and infectious influence that results in the disease; a combination that sparks what some feel is the main contributor to the disease, an overactive immune system.

The hallmark pathology of Alzheimer’s is accumulation of a protein called amyloid in the brain. Many researchers have assumed these aggregates, or plaques, are simply a byproduct of some other process at the core of the disease. Other scientists posit that the protein itself contributes to the condition in some way.

The theory that amyloid is the root cause of Alzheimer’s is losing steam. But the protein may still contribute to the disease, even if it winds up being deemed infectious.

Work by Harvard neuroscientist Rudolph Tanzi suggests it might be a bit of both. Along with colleague Robert Moir, Tanzi has shown that amyloid is lethal to viruses and bacteria in the test tube, and also in mice. He now believes the protein is part of our ancient immune system that like antibodies, ramps up its activity to help fend off unwanted bugs.

So does that mean that the microbe is the cause of Alzheimer’s, and amyloid a harmless reaction to it? According to Tanzi it’s not that simple.

Tanzi believes that in many cases of Alzheimer’s, microbes are probably the initial seed that sets off a toxic tumble of molecular dominoes. Early in the disease amyloid protein builds up to fight infection, yet too much of the protein begins to impair function of neurons in the brain. The excess amyloid then causes another protein, called tau, to form tangles, which further harm brain cells.

But as Tanzi explains, the ultimate neurological insult in Alzheimer’s is the body’s reaction to this neurotoxic mess. All the excess protein revs up the immune system, causing inflammation — and it’s this inflammation that does the most damage to the Alzheimer’s-afflicted brain.

So what does this say about the future of treatment? Possibly a lot. Tanzi envisions a day when people are screened at, say, 50 years old. “If their brains are riddled with too much amyloid,” he says, “we knock it down a bit with antiviral medications. It’s just like how you are prescribed preventative drugs if your cholesterol is too high.”

Tanzi feels that microbes are just one possible seed for the complex pathology behind Alzheimer’s. Genetics may also play a role, as certain genes produce a type of amyloid more prone to clumping up. He also feels environmental factors like pollution might contribute.

Dr. James Burke, professor of medicine and psychiatry at Duke University’s Alzheimer’s Disease Research Center, isn’t willing to abandon the amyloid theory altogether, but agrees it’s time for the field to move on. “There may be many roads to developing Alzheimer’s disease and it would be shortsighted to focus just on amyloid and tau,” he says. “A million-dollar prize is attention- getting, but the reward for identifying a treatable target to delay or prevent Alzheimer’s disease is invaluable.”

Any treatment that disrupts the cascade leading to amyloid, tau and inflammation could theoretically benefit an at-risk brain. The vast majority of Alzheimer’s treatment trials have failed, including many targeting amyloid. But it could be that the patients included were too far along in their disease to reap any therapeutic benefit.

If a microbe is responsible for all or some cases of Alzheimer’s, perhaps future treatments or preventive approaches will prevent toxin protein buildup in the first place. Both Tanzi and Norins believe Alzheimer’s vaccines against viruses like herpes might one day become common practice.

In July of this year, in collaboration with Norins, the Infectious Diseases Society of America announced that they plan to offer two $50,000 grants supporting research into a microbial association with Alzheimer’s. According to Norins, this is the first acknowledgement by a leading infectious disease group that Alzheimer’s may be microbial in nature – or at least that it’s worth exploring.

“The important thing is not the amount of the money, which is a pittance compared with the $2 billion NIH spends on amyloid and tau research,” says Norins, “but rather the respectability and more mainstream status the grants confer on investigating of the infectious possibility. Remember when we thought ulcers were caused by stress?”

Ulcers, we now know, are caused by a germ.

https://www.npr.org/sections/health-shots/2018/09/09/645629133/infectious-theory-of-alzheimers-disease-draws-fresh-interest?ft=nprml&f=1001

By Jim Dryden

It may be possible in the future to screen patients for Alzheimer’s disease using an eye exam.

Using technology similar to what is found in many eye doctors’ offices, researchers at Washington University School of Medicine in St. Louis have detected evidence suggesting Alzheimer’s in older patients who had no symptoms of the disease.

Their study, involving 30 patients, is published Aug. 23 in the journal JAMA Ophthalmology.

“This technique has great potential to become a screening tool that helps decide who should undergo more expensive and invasive testing for Alzheimer’s disease prior to the appearance of clinical symptoms,” said the study’s first author, Bliss E. O’Bryhim, MD, PhD, a resident physician in the Department of Ophthalmology & Visual Sciences. “Our hope is to use this technique to understand who is accumulating abnormal proteins in the brain that may lead them to develop Alzheimer’s.”

Significant brain damage from Alzheimer’s disease can occur years before any symptoms such as memory loss and cognitive decline appear. Scientists estimate that Alzheimer’s-related plaques can build up in the brain two decades before the onset of symptoms, so researchers have been looking for ways to detect the disease sooner.

Physicians now use PET scans and lumbar punctures to help diagnose Alzheimer’s, but they are expensive and invasive.

In previous studies, researchers examining the eyes of people who had died from Alzheimer’s have reported that the eyes of such patients showed signs of thinning in the center of the retina and degradation of the optic nerve.

In the new study, the researchers used a noninvasive technique — called optical coherence tomography angiography — to examine the retinas in eyes of 30 study participants with an average age in the mid 70s, none of whom exhibited clinical symptoms of Alzheimer’s.

Those participants were patients in The Memory and Aging Project at Washington University’s Knight Alzheimer’s Disease Research Center. About half of those in the study had elevated levels of the Alzheimer’s proteins amyloid or tau as revealed by PET scans or cerebrospinal fluid, suggesting that although they didn’t have symptoms, they likely would develop Alzheimer’s. In the other subjects, PET scans and cerebrospinal fluid analyses were normal.

“In the patients with elevated levels of amyloid or tau, we detected significant thinning in the center of the retina,” said co-principal investigator Rajendra S. Apte, MD, PhD, the Paul A. Cibis Distinguished Professor of Ophthalmology and Visual Sciences. “All of us have a small area devoid of blood vessels in the center of our retinas that is responsible for our most precise vision. We found that this zone lacking blood vessels was significantly enlarged in people with preclinical Alzheimer’s disease.”

The eye test used in the study shines light into the eye, allowing a doctor to measure retinal thickness, as well as the thickness of fibers in the optic nerve. A form of that test often is available in ophthalmologist’s offices.

For this study, however, the researchers added a new component to the more common test: angiography, which allows doctors to distinguish red blood cells from other tissue in the retina.

“The angiography component allows us to look at blood-flow patterns,” said the other co-principal investigator, Gregory P. Van Stavern, MD, a professor of ophthalmology and visual sciences. “In the patients whose PET scans and cerebrospinal fluid showed preclinical Alzheimer’s, the area at the center of the retina without blood vessels was significantly larger, suggesting less blood flow.”

Added Apte: “The retina and central nervous system are so interconnected that changes in the brain could be reflected in cells in the retina.”

Of the patients studied, 17 had abnormal PET scans and/or lumbar punctures, and all of them also had retinal thinning and significant areas without blood vessels in the centers of their retinas. The retinas appeared normal in the patients whose PET scans and lumbar punctures were within the typical range.

More studies in patients are needed to replicate the findings, Van Stavern said, but he noted that if changes detected with this eye test can be used as markers for Alzheimer’s risk, it may be possible one day to screen people as young as their 40s or 50s to see whether they are at risk for the disease.

“We know the pathology of Alzheimer’s disease starts to develop years before symptoms appear, but if we could use this eye test to notice when the pathology is beginning, it may be possible one day to start treatments sooner to delay further damage,” he said.

O’Bryhim BE, Apte RS, Kung N, Coble D, Van Stavern GP. Optical coherence tomography angiography findings in pre-clinical Alzheimer’s disease. JAMA Ophthalmology, Aug. 23, 2018.

https://source.wustl.edu/2018/08/alzheimers-one-day-may-be-predicted-during-eye-exam/


Reprinted from The Lancet Neurology, http://dx.doi.org/10.1016/S1474-4422(18)30245-X, Trapp et al, Cortical neuronal densities and cerebral white matter demyelination in multiple sclerosis: a retrospective study, Copyright (2018), with permission from Elsevier


Bruce Trapp, Ph.D., chair of Cleveland Clinic’s Lerner Research Institute Department of Neurosciences

Cleveland Clinic researchers have discovered a new subtype of multiple sclerosis (MS), providing a better understanding of the individualized nature of the disease.

MS has long been characterized as a disease of the brain’s white matter, where immune cells destroy myelin – the fatty protective covering on nerve cells. The destruction of myelin (called demyelination) was believed to be responsible for nerve cell (neuron) death that leads to irreversible disability in patients with MS.

However, in the new findings, a research team led by Bruce Trapp, Ph.D., identified for the first time a subtype of the disease that features neuronal loss but no demyelination of the brain’s white matter. The findings, published in Lancet Neurology, could potentially lead to more personalized diagnosis and treatments.

The team’s findings support the concept that neurodegeneration and demyelination can occur independently in MS and underscore the need for more sensitive MRI imaging techniques for evaluating brain pathology in real time and monitoring treatment response in patients with the disease. This new subtype of MS, called myelocortical MS (MCMS), was indistinguishable from traditional MS on MRI. The researchers observed that in MCMS, part of the neurons become swollen and look like typical MS lesions indicative of white matter myelin loss on MRI. The disease was only diagnosed in post-mortem tissues.

“This study opens up a new arena in MS research. It is the first to provide pathological evidence that neuronal degeneration can occur without white matter myelin loss in the brains of patients with the disease,” said Trapp, chair of Cleveland Clinic’s Lerner Research Institute Department of Neurosciences. “This information highlights the need for combination therapies to stop disability progression in MS.”

In the study of brain tissue from 100 MS patients who donated their brains after death, the researchers observed that 12 brains did not have white matter demyelination. They compared microscopic tissue characteristics from the brains and spinal cords of 12 MCMS patients, 12 traditional MS patients and also individuals without neurological disease. Although both MCMS and traditional MS patients had typical MS lesions in the spinal cord and cerebral cortex, only the latter group had MS lesions in the brain white matter.

Despite having no typical MS lesions in the white matter, MCMS brains did have reduced neuronal density and cortical thickness, which are hallmarks of brain degeneration also observed in traditional MS. Contrary to previous belief, these observations show that neuronal loss can occur independently of white matter demyelination.

“The importance of this research is two-fold. The identification of this new MS subtype highlights the need to develop more sensitive strategies for properly diagnosing and understanding the pathology of MCMS,” said Daniel Ontaneda, M.D., clinical director of the brain donation program at Cleveland Clinic’s Mellen Center for Treatment and Research in MS. “We are hopeful these findings will lead to new tailored treatment strategies for patients living with different forms of MS.”

Dr. Trapp is internationally known for his work on mechanisms of neurodegeneration and repair in MS and has published more than 240 peer-reviewed articles and 40 book chapters. He also holds the Morris R. and Ruth V. Graham Endowed Chair in Biomedical Research. In 2017 he received the prestigious Outstanding Investigator award by the National Institute of Neurological Disorders and Stroke to examine the biology of MS and to seek treatments that could slow or reverse the disease.

https://newsroom.clevelandclinic.org/2018/08/21/cleveland-clinic-researchers-discover-novel-subtype-of-multiple-sclerosis/