Archive for the ‘Mars’ Category

By Jennifer Frazer

In addition to irritatingly lodging themselves everywhere from shower grout to the Russian space station Mir, fungi that live inside rocks in Antarctica have managed to survive a year and half in low-Earth orbit under punishing Mars-like conditions, scientists recently reported in the journal Astrobiology. A few of them even managed to cap their year in Mars-like space by reproducing.

Why were they subjected to such an ordeal? Scientists have concluded over the past decade that Mars (which like Earth is about four and a half billion years old) supported water for long periods during its first billion years, and they wonder if life that may have evolved during that time may remain on the planet in fossilized or even fresh condition. The climate back then was more temperate than today, featuring a thicker atmosphere and a more forgiving and moist climate.

But how do you search for that life? Using life that exists in what they believe is this planet’s closest analogue, a team of scientists from Europe and the United States hoped to identify the kind of biosignatures that might prove useful in such a search, while also seeing if the Earthly life forms might be capable of withstanding current Mars-like conditions.

Which is to say, not nice.

The temperature on Mars fluctuates wildly on a daily basis. The Mars Science Laboratory rover has measured daily swings of up to 80°C (that’s 144°F), veering from -70°C(-94°F) at night to 10°C(50°F) at Martian high noon. If you can survive that, you also have to get past the super-intense ultraviolet radiation, an atmosphere of 95% carbon dioxide (the effect of which on humans was vividly illustrated at the end of Total Recall), a pressure of 600 to 900 Pascals (Earth: 101,325 Pascals), and cosmic radiation at a dose of about .2mGy/day (Earth: .001 mGy/day). I don’t know about you, but Mars is not my first vacation choice.

And it’s probably not Cryomyces antarcticus’s either, in spite of the extreme place it calls home. Cryomyces antarcticus and its relative Cryomyces minteri – the two fungi tested independently in this study — are members of a group called black fungi or black yeast for their heavily pigmented hulls that allow them to withstand a wide variety environmental stresses. Members of the group somewhat notoriously turned up a few years ago in a study that found two species of the group commonly live inside dishwashers in people’s homes (they were opportunistic human pathogns, but most humans are immune to them). But most of these fungi live quietly in the most extreme environments on earth.

The particular black fungi used in this experiment, generally considered the toughest on the planet, live in tiny tunnels of their own creation inside Antarctic rocks. This is apparently the only place they can grow without being annihilated by the crushing climate and blistering ultraviolet radiation of Antarctica. Antarctica also happens to be the place on Earth most similar – although still not particularly similar, as you have seen — to our friendly neighborhood Red Planet. This endurance has made both black fungi and their neighbors the lichens popular test pilots for Mars-like conditions on the international space station.

For example, lichen-forming fungi that create the common and beautiful orange Xanthoria elegans and also Acarospora made the same trip to the ISS previously, in a European module of the International Space Station called EXPOSE-E. Both survived the experience, and Acarospora even managed to reproduce.

But this seems to be the first time a non-lichen forming fungus has received the ISS treatment.

These particular two fungi – Cryomyces antarcticus and Cryomyces minteri – were collected from the McMurdo Dry Valleys of Antarctica in Southern Victoria Land, supposedly the most Mars-like place on Earth. They were isolated from dry sandstone onto a plate of fungus food called malt extract agar. This gelatinous disc was then dried along with the fungus living on it inside a dessicator, and sent into space like that.

Each colony was about 1mm in diameter, and each yeast cell in it was 10 micrometers in size. Like most black yeast/fungi, they have a dark outer wall.

The scientists also tested an entire community of “cryptoendolithic” organisms – those that live secretly inside rocks, including not just fungi but also rock-dwelling blue-green algae – by testing whole fragments of rocks collected on Battleship Promontory in Southern Victoria Land, Antarctica. The various organisms live in bands of varying color and depth within 1 centimeter of the rock surface.

The fungi were launched into space in February 2008 and returned to Earth on September 12, 2009. During that time they were placed in a bath of gasses as similar as possible to the atmosphere of Mars and exposed to simulated full Martian UV radiation, one-thousandth Martian UV, or kept in the dark. They also endured the cosmic background radiation of space and temperature swings between -21.7°C and 42.9°C – much warmer than Mars, but the best that could be done. Control samples remained in the dark on Earth.

Once back on Earth, the colonies and rock samples were rehydrated. Their appearance had not changed during their voyage. They were then tested for viability by diluting them in water and plating the resulting solution to see how many new colonies formed. They also estimated the percentage of cells with undamaged cell membranes by using a chemical that can only penetrate damaged cell membranes.

The scientists found that the black yeast’s ability to form new colonies was severely impaired by its time on “Mars”, but it was not zero. When kept in the dark on the ISS, about 1.5% of C. antarcticus was able to form colonies post-exposure, while only .08% of C. minteri could. Surprisingly, those exposed to .1% of Mars UV did better, with 4-5 times more surviving: just over 8% for C. antarcticus and 2% for C. minteri. Perhaps the weak radiation stimulated mutations or stress-response proteins that might have helped the fungi somehow.

With the full force of Martian radiation, the survival rates were about the same as for those samples kept in the dark, which is to say, nearly nil. By comparison, about 46% of control C. antarcticus samples kept in the dark back on Earth yielded colony forming units, while only about 17% of C. minteri did. Not super high rates, but still much higher than their space-faring comrades.

On the other hand, the percentage of cells with intact cell membranes was apparently much higher than the number that could reproduce. 65% of C. antarcticus cells remained intact regardless of UV exposure, while C. minteri’s survival rates fluctuated between 18 and 50%, again doing better with UV exposure than in the dark. Colonized rock communities yielded the highest percentage of intact cells of any samples when kept in the dark – around 75%, but some of the lowest when exposed to solar UV, with just 10-18 % surviving intact.

What explains this apparent survival discrepancy between being alive and being able to reproduce? It may be that the reproductive apparati of the fungi are more sensitive to cosmic radiation than their cell membranes and walls, the authors suggest.

The authors’ results also suggest to them that DNA is the biomolecule of choice to use to search for life on Mars, as it, like the cell membranes, survived largely intact even in cells that could no longer reproduce.

Although Mars-based life may not use DNA genetic material, then again, it just might. It certainly seems to have worked well for us here on Earth.

Even though few of the fungi exposed to Mars-like conditions survived well enough to reproduce, in all cases, at least a fraction did. Perhaps that is the material thing. A similar previous experiment showed one green alga, Stichococcus, and one fungus, Acarospora were able to reproduce after a very similar trip on the space station. Another experiment with the bacterium Bacillus subtilis found that up to 20% of their spores were able to germinate and grow after Mars-like exposure. Theoretically, it only takes one or two to hang on and adapt to these conditions to found a whole lineage of Mars-tolerant life (the major reason, by the way, for NASA’s Planetary Protection Program).

On the other hand, some have suggested that long-term survival of Earthly life is impossible on Mars. Given the extremely low reproductive ability after just 1.5 years, this study did nothing to undermine that idea either.

But all of our studies have tested life that evolved on Earth. What about life that evolved on Mars? There’s just no telling how similar or dissimilar such creatures — supposing they exist or ever existed – might be.

http://blogs.scientificamerican.com/artful-amoeba/fungi-in-space/

by Alfredo Carpineti

On Sunday, January 24, NASA’s Mars rover Opportunity reached 12 Earth years on the surface of Mars, having landed on the same day in 2004.

It was budgeted to last 90 days, with a lifespan of a few months, before it was thought its solar panel would be covered in dust and stop working. But thanks to a number of factors, including wind on Mars, the tenacious rover has been able to endure the harsh Martian environment for much, much longer.

The rover has begun to show its age, becoming more difficult to maneuver and having memory storage problems. Also, two of its scientific instruments have now stopped functioning completely. Problems aside, though, Opportunity continues to produce an abundance of science.

Opportunity is currently exploring a region rich in clay minerals that would have formed in wet conditions. The area is called Marathon Valley, since it’s 42 kilometers (26 miles) – the Olympic marathon distance – from Opportunity’s landing site in Eagle Crater.

“With healthy power levels, we are looking forward to completing the work in Marathon Valley this year and continuing onward with Opportunity,” Exploration Rover Project Manager John Callas said in a statement.

The rover is currently removing surface crust from rocks in the valley, and the texture and composition are being examined with the use of its robotic arm.

The Martian winter started in January, so the solar energy that the rover is currently receiving is significantly lower than usual. The team positioned the rover in a more favorable sun-facing orientation, which has increased the amount of power the solar panels are generating, allowing for power-consuming operations like drilling and rock-grinding.

“Opportunity has stayed very active this winter, in part because the solar arrays have been much cleaner than in the past few winters,” said Callas.

The rover is fully funded until the end of 2016, and the Jet Propulsion Laboratory is currently working on the next extension proposal. In the last review, Opportunity received the highest rating of any ongoing Mars mission.

http://www.iflscience.com/opportunity-s-twelve-years-red-planet

mars 2

Dutch nonprofit Mars One has named 100 people who will remain in the running for a one-way trip to Mars, expected to leave Earth in 2024. Out of more than 200,000 people who applied, 24 will be trained for the mission and four will take the first trip, if all goes according to plan.

This round of eliminations was made after Norbert Kraft, Mars One’s chief medical officer, interviewed 660 candidates who said they were ready to leave everything behind to venture to Mars. The applications were open to anyone over age 18, because the organization believes its greatest need is not to find the smartest or most-skilled people, but rather the people most dedicated to the cause.

Even the astronauts on the International Space Station switch out every couple of months and go back home to family,” Kraft said. “In our case, the astronauts will live together in a group for the rest of their lives.”

Of the 50 men and 50 women selected for the next cut, 38 reside in the U.S. The next-most represented countries are Canada and Australia, both with seven. Two of the candidates were 18 when they applied in 2013; the oldest, Reginald George Foulds of Toronto, was 60.

By education, the group breaks down as: 19 with no degree, two with associates, 27 bachelors, 30 masters, one law degree, four medical degrees and seven PhDs. Thirteen of the candidates are currently in school, 81 are employed and six are not working.

Of the 16 candidates who live in D.C., Maryland and Virginia, 10 were eliminated, including a married couple. Those who remain are:

Daniel Max Carey, 52, a data architect who lives in Annandale, Va.

Oscar Mathews, 32, of Suffolk, Va., a nuclear engineer and Navy reservist.

Michael Joseph McDonnell, 50, of Fairfax, Va.

Laura Maxine Smith-Velazquez, 38, a human factors and systems engineer in Owings Mills, Md.

Sonia Nicole Van Meter, 36, a political consultant who recently moved from Austin, Tex., to Alexandria, Va.

Leila Rowland Zucker, 46, an emergency room doctor at Howard University Hospital in D.C.

Here’s how Mars One describes what comes next for these candidates:

“The following selection rounds will focus on composing teams that can endure all the hardships of a permanent settlement on Mars. The candidates will receive their first shot at training in the copy of the Mars Outpost on Earth and will demonstrate their suitability to perform well in a team.”

To fund the estimated $6 billion trip (for just the first four people), Mars One will be televising the remainder of the competition to narrow the group down to 24. Those 24 people will be divided into six teams of four that will compete to determine which group is most prepared to leave for Mars in 2024.

http://www.washingtonpost.com/blogs/style-blog/wp/2015/02/16/100-finalists-have-been-chosen-for-a-one-way-trip-to-mars/?tid=trending_strip_6

Thanks to Kebmodee for bringing this to the attention of the It’s Interesting community.

The NASA Curiosity rover that was thought to bring only cameras, sensors, and scientific equipment when it traveled to Mars in August 2012 may have brought along dozens of species of bacteria that originated on Earth, according to a new study.

A study conducted by the American Society for Microbiology and published in the Nature science journal revealed that 377 strains of bacteria may have survived the sterilization process that the Curiosity rover endured before it was launched in an attempt to avoid contaminating the red planet.

It was less of a surprise for scientists that the bacteria survived the cleaning process than the revelation about the conditions they went through. The microbes in question endured near-freezing temperatures and intense damage caused by ultra-C radiation, thought to be the most harmful type of radiation.

“Although studies are constantly expanding our knowledge about life in extreme environments, it is still unclear whether organisms from Earth can survive and grow in a Martian environment where there is intense radiation, high oxidation potential, extreme desiccation, and limited nutrients,” microbiologist Stephanie Smith of the University of Idaho in Moscow and lead author of the study wrote in the study’s abstract.

“Knowing if microorganisms survive in conditions simulating those on the Martian surface is paramount to addressing whether these microorganisms could pose a risk to future challenging planetary protection missions.”

Whether the bacteria spread to the Mars surface is unknown, although the very possibility has already made scientists concerned about unnaturally spreading life from earth to Mars.

There is already a United Nations Outer Space Treaty that aims to regulate how the increasingly advanced space programs from the international community explore the unknown. The parameters were first agreed upon in 1966 and they include, among others, the stipulation that “States shall be liable for damage caused by their space objects; and shall avoid harmful contamination of space and celestial bodies.”

The limits vary depending on where the spacecraft lands. Mars, Europa, and other bodies that could potentially nurture life have a relatively strict standard of 300 bacterial spores per square meter. The goal is to keep the odds of contamination Mars (and others) at less than 1 in 10,000.

“Up to 300,000 spores are allowed on the exposed surfaces of the landed spacecraft. That many spores would fit on the head of a large pin,” said Laura Newlin, an engineer at NASA’s Jet Propulsion Laboratory in California. “Currently our total spore count on the surface…is comfortably under 200,000, so we’re below the allowable level.”

The announcement comes at a time when another team of researchers published an unrelated study revealing that methanogens, the oldest organisms on earth, could be the perfect candidate to foster Martian life. The University of Arkansas Fayetteville study determined that, because methanogens are non-photosynthetic and capable of living without oxygen, they are capable of living underground on Mars.

“The surface temperature of Mars varies widely, often ranging between minus 90 degrees Celsius and 27 degrees Celsius over one Martian day,” Rebecca Mickol, a doctoral student of space and planetary sciences, told Science Daily. “If any life were to exist on Mars right now, it would have to at least survive that temperature range. The survival of these two methanogen species, exposed to long-term freeze thaw cycles, suggests methanogens could potentially inhabit the future of Mars.”

http://rt.com/usa/160636-mars-curiosity-rover-bacteria/

April 15th is usually known for one reason only: Tax Day. However, this year citizens of North and South America are in for something a little more special. On the cosmic schedule this April are a full lunar eclipse and a Mars opposition. So how does all that work exactly? And what does it mean?

To begin with, a full lunar eclipse occurs when the Earth is situated directly between the sun and the moon. Hence, the Earth casts its shadow straight on the surface of the usually bright full moon. On April 15th commencing at 1:58am the moon will be shifting into the Earth’s Umbra. Umbra is a word derived from Latin meaning “shade” or “shadow.” At this point the moon will only begin to be covered by the shadow as it assumes a reddish hue. From here on in the moon is in the process of a complete eclipse. The second phase of the eclipse will begin at around 3:07am when the moon will be exactly within the Earth’s Umbra and covered completed. This phase of the eclipse lasts over an hour until 4:25am. Then the third phase begins as the moon exists the Umbra.

The eclipse will be completely over by 5:33am. Lunar eclipses can be seen with the naked eye, binoculars, telescopes and require no special equipment as the solar eclipse does. The lunar eclipse and Mars opposition comprise a valuable and dear experience to star gazers in the Western hemisphere. However, astrologers will not be the only ones appreciate the beauty which these events offer.

What is a Mars opposition? Well, as the planets in the solar system revolve in elliptical patterns they are sometimes closer and further away from other planets. In this case, Mars is closer to Earth than it has been since 2007. Many still remember back in 2003 when Mars was extremely bright and visible to the naked eye for weeks. This event is similar except that the proximity of Mars is smaller at this time. Mars will be a mere 50 million miles away. On April 8th, as the sun is setting in the west, gazers should look directly to the east and there will discover a bright red dot on the celestial fabric. It is said that Mars will appear brighter even than the Sirius- that bright star within Canis Major which philosophers often look up to when deep in thought outside at night.

Mars will appear bright throughout the spring and summer though April 8th is the ideal night to catch a glimpse. Throughout the lunar eclipse it will also be brightly visible along with Saturn, Venus and Jupiter. It seems that the sky will be smiling down for tax day.

Many cultures both ancient and recent have looked up into the sky and deciphered these signs written in the stars. The Moon stands for the feminine, reflective side of people while the Sun is the masculine and active. Mars is the planet not only of war but of motivation and unstoppable force. Jupiter stands for justice, glory and honor, Venus for love and attraction and Saturn is the taskmaster who commands the attention of these aspects and puts them into action. For those who rely on the stars to plan certain events, this may be a very special night to commence.

With a lunar eclipse and Mars opposition, April is turning out to be a very powerful month. Be sure to make the most of it. With Mars in such a strong position, remember to wait for the right moment to make a move. With the lunar eclipse, remember to take time to reflect on thoughts and emotions. All in all, humanity is made of the stars and planets. Perhaps on April 15th the stars will be looking back down at Earth instead of the other way around.

http://guardianlv.com/2014/03/lunar-eclipse-and-mars-opposition/

Thanks to Da Brayn for bringing this to the attention of the It’s Interesting community.

Creativity works in mysterious and often paradoxical ways. Creative thinking is a stable, defining characteristic in some personalities, but it may also change based on situation and context. Inspiration and ideas often arise seemingly out of nowhere and then fail to show up when we most need them, and creative thinking requires complex cognition yet is completely distinct from the thinking process.

Neuroscience paints a complicated picture of creativity. As scientists now understand it, creativity is far more complex than the right-left brain distinction would have us think (the theory being that left brain = rational and analytical, right brain = creative and emotional). In fact, creativity is thought to involve a number of cognitive processes, neural pathways and emotions, and we still don’t have the full picture of how the imaginative mind works.

And psychologically speaking, creative personality types are difficult to pin down, largely because they’re complex, paradoxical and tend to avoid habit or routine. And it’s not just a stereotype of the “tortured artist” — artists really may be more complicated people. Research has suggested that creativity involves the coming together of a multitude of traits, behaviors and social influences in a single person.

“It’s actually hard for creative people to know themselves because the creative self is more complex than the non-creative self,” Scott Barry Kaufman, a psychologist at New York University who has spent years researching creativity, told The Huffington Post. “The things that stand out the most are the paradoxes of the creative self … Imaginative people have messier minds.”

While there’s no “typical” creative type, there are some tell-tale characteristics and behaviors of highly creative people. Here are 18 things they do differently.

They daydream.

Creative types know, despite what their third-grade teachers may have said, that daydreaming is anything but a waste of time.

According to Kaufman and psychologist Rebecca L. McMillan, who co-authored a paper titled “Ode To Positive Constructive Daydreaming,” mind-wandering can aid in the process of “creative incubation.” And of course, many of us know from experience that our best ideas come seemingly out of the blue when our minds are elsewhere.

Although daydreaming may seem mindless, a 2012 study suggested it could actually involve a highly engaged brain state — daydreaming can lead to sudden connections and insights because it’s related to our ability to recall information in the face of distractions. Neuroscientists have also found that daydreaming involves the same brain processes associated with imagination and creativity.

They observe everything.

The world is a creative person’s oyster — they see possibilities everywhere and are constantly taking in information that becomes fodder for creative expression. As Henry James is widely quoted, a writer is someone on whom “nothing is lost.”

The writer Joan Didion kept a notebook with her at all times, and said that she wrote down observations about people and events as, ultimately, a way to better understand the complexities and contradictions of her own mind:

“However dutifully we record what we see around us, the common denominator of all we see is always, transparently, shamelessly, the implacable ‘I,'” Didion wrote in her essay On Keeping A Notebook. “We are talking about something private, about bits of the mind’s string too short to use, an indiscriminate and erratic assemblage with meaning only for its marker.”

They work the hours that work for them.

Many great artists have said that they do their best work either very early in the morning or late at night. Vladimir Nabokov started writing immediately after he woke up at 6 or 7 a.m., and Frank Lloyd Wright made a practice of waking up at 3 or 4 a.m. and working for several hours before heading back to bed. No matter when it is, individuals with high creative output will often figure out what time it is that their minds start firing up, and structure their days accordingly.

They take time for solitude.

In order to be open to creativity, one must have the capacity for constructive use of solitude. One must overcome the fear of being alone,” wrote the American existential psychologist Rollo May.

Artists and creatives are often stereotyped as being loners, and while this may not actually be the case, solitude can be the key to producing their best work. For Kaufman, this links back to daydreaming — we need to give ourselves the time alone to simply allow our minds to wander.

“You need to get in touch with that inner monologue to be able to express it,” he says. “It’s hard to find that inner creative voice if you’re … not getting in touch with yourself and reflecting on yourself.”

They turn life’s obstacles around.

Many of the most iconic stories and songs of all time have been inspired by gut-wrenching pain and heartbreak — and the silver lining of these challenges is that they may have been the catalyst to create great art. An emerging field of psychology called post-traumatic growth is suggesting that many people are able to use their hardships and early-life trauma for substantial creative growth. Specifically, researchers have found that trauma can help people to grow in the areas of interpersonal relationships, spirituality, appreciation of life, personal strength, and — most importantly for creativity — seeing new possibilities in life.

“A lot of people are able to use that as the fuel they need to come up with a different perspective on reality,” says Kaufman. “What’s happened is that their view of the world as a safe place, or as a certain type of place, has been shattered at some point in their life, causing them to go on the periphery and see things in a new, fresh light, and that’s very conducive to creativity.”

They seek out new experiences.

Creative people love to expose themselves to new experiences, sensations and states of mind — and this openness is a significant predictor of creative output.

“Openness to experience is consistently the strongest predictor of creative achievement,” says Kaufman. “This consists of lots of different facets, but they’re all related to each other: Intellectual curiosity, thrill seeking, openness to your emotions, openness to fantasy. The thing that brings them all together is a drive for cognitive and behavioral exploration of the world, your inner world and your outer world.”

They “fail up.”

Resilience is practically a prerequisite for creative success, says Kaufman. Doing creative work is often described as a process of failing repeatedly until you find something that sticks, and creatives — at least the successful ones — learn not to take failure so personally.

“Creatives fail and the really good ones fail often,” Forbes contributor Steven Kotler wrote in a piece on Einstein’s creative genius.

They ask the big questions.
Creative people are insatiably curious — they generally opt to live the examined life, and even as they get older, maintain a sense of curiosity about life. Whether through intense conversation or solitary mind-wandering, creatives look at the world around them and want to know why, and how, it is the way it is.

They people-watch.

Observant by nature and curious about the lives of others, creative types often love to people-watch — and they may generate some of their best ideas from it.

“[Marcel] Proust spent almost his whole life people-watching, and he wrote down his observations, and it eventually came out in his books,” says Kaufman. “For a lot of writers, people-watching is very important … They’re keen observers of human nature.”

They take risks.

Part of doing creative work is taking risks, and many creative types thrive off of taking risks in various aspects of their lives.

“There is a deep and meaningful connection between risk taking and creativity and it’s one that’s often overlooked,” contributor Steven Kotler wrote in Forbes. “Creativity is the act of making something from nothing. It requires making public those bets first placed by imagination. This is not a job for the timid. Time wasted, reputation tarnished, money not well spent — these are all by-products of creativity gone awry.”

They view all of life as an opportunity for self-expression.

Nietzsche believed that one’s life and the world should be viewed as a work of art. Creative types may be more likely to see the world this way, and to constantly seek opportunities for self-expression in everyday life.

“Creative expression is self-expression,” says Kaufman. “Creativity is nothing more than an individual expression of your needs, desires and uniqueness.”

They follow their true passions.

Creative people tend to be intrinsically motivated — meaning that they’re motivated to act from some internal desire, rather than a desire for external reward or recognition. Psychologists have shown that creative people are energized by challenging activities, a sign of intrinsic motivation, and the research suggests that simply thinking of intrinsic reasons to perform an activity may be enough to boost creativity.

“Eminent creators choose and become passionately involved in challenging, risky problems that provide a powerful sense of power from the ability to use their talents,” write M.A. Collins and T.M. Amabile in The Handbook of Creativity.

They get out of their own heads.

Kaufman argues that another purpose of daydreaming is to help us to get out of our own limited perspective and explore other ways of thinking, which can be an important asset to creative work.

“Daydreaming has evolved to allow us to let go of the present,” says Kaufman. “The same brain network associated with daydreaming is the brain network associated with theory of mind — I like calling it the ‘imagination brain network’ — it allows you to imagine your future self, but it also allows you to imagine what someone else is thinking.”

Research has also suggested that inducing “psychological distance” — that is, taking another person’s perspective or thinking about a question as if it was unreal or unfamiliar — can boost creative thinking.

They lose track of the time.
Creative types may find that when they’re writing, dancing, painting or expressing themselves in another way, they get “in the zone,” or what’s known as a flow state, which can help them to create at their highest level. Flow is a mental state when an individual transcends conscious thought to reach a heightened state of effortless concentration and calmness. When someone is in this state, they’re practically immune to any internal or external pressures and distractions that could hinder their performance.

You get into the flow state when you’re performing an activity you enjoy that you’re good at, but that also challenges you — as any good creative project does.

“[Creative people] have found the thing they love, but they’ve also built up the skill in it to be able to get into the flow state,” says Kaufman. “The flow state requires a match between your skill set and the task or activity you’re engaging in.”

They surround themselves with beauty.

Creatives tend to have excellent taste, and as a result, they enjoy being surrounded by beauty.

A study recently published in the journal Psychology of Aesthetics, Creativity, and the Arts showed that musicians — including orchestra musicians, music teachers, and soloists — exhibit a high sensitivity and responsiveness to artistic beauty.

They connect the dots.

If there’s one thing that distinguishes highly creative people from others, it’s the ability to see possibilities where other don’t — or, in other words, vision. Many great artists and writers have said that creativity is simply the ability to connect the dots that others might never think to connect.

In the words of Steve Jobs:

“Creativity is just connecting things. When you ask creative people how they did something, they feel a little guilty because they didn’t really do it, they just saw something. It seemed obvious to them after a while. That’s because they were able to connect experiences they’ve had and synthesize new things.”

They constantly shake things up.

Diversity of experience, more than anything else, is critical to creativity, says Kaufman. Creatives like to shake things up, experience new things, and avoid anything that makes life more monotonous or mundane.

“Creative people have more diversity of experiences, and habit is the killer of diversity of experience,” says Kaufman.

They make time for mindfulness.

Creative types understand the value of a clear and focused mind — because their work depends on it. Many artists, entrepreneurs, writers and other creative workers, such as David Lynch, have turned to meditation as a tool for tapping into their most creative state of mind.

And science backs up the idea that mindfulness really can boost your brain power in a number of ways. A 2012 Dutch study suggested that certain meditation techniques can promote creative thinking. And mindfulness practices have been linked with improved memory and focus, better emotional well-being, reduced stress and anxiety, and improved mental clarity — all of which can lead to better creative thought.

http://www.huffingtonpost.com/2014/03/04/creativity-habits_n_4859769.html

MARS
Orbital Sciences Corp. – Dennis Tito says U.S. should exploit rare alignment of planets to send astronauts to Mars. His organization would use the Orbital Sciences Corporation’s new Cygnus capsule, which recently made a successful trip to the international space station.

By Joel Achenbach

Billionaire Dennis Tito, tired of being told that we can’t send humans to Mars just yet, on Wednesday revealed his scheme for launching two astronauts to the red planet as early as December 2017.

Dubbed “Inspiration Mars,” the flyby mission would exploit a rare alignment of Earth and Mars that minimizes the time and the fuel it would take to get to Mars and back home again. The astronauts would come within 100 miles of the Martian surface before being slung back to Earth.

“It would be a voyage of around 800 million miles around the sun in 501 days,” Tito testified Wednesday at a hearing of the House subcommittee on space. “No longer is a Mars flyby mission just one more theoretical idea. It can be done. Not in a matter of decades, but in a few years.”

Tito is a former engineer who made a fortune in investment management and, in 2001, became the first person to pay his way into space, buying a seat on a Russian rocket. Now he’s pitching Inspiration Mars as a national priority for the United States. Grab this rare chance to go to Mars quickly or risk seeing China or Russia get there first, he told members of Congress.

Tito mentioned a backup plan that would offer Inspiration Mars four more years of development time. Another alignment of planets in 2021 offers a second chance to go to Mars fairly quickly, but the journey would last 80 days longer and require that the astronauts fly much closer to the sun, within the orbit of Venus, in one portion of the trip. That would add to the already considerable radiation hazards.

When Tito broached the idea of Inspiration Mars early this year, he thought he could use primarily private rockets and minimize the need for NASA involvement. But the feasibility study led Tito back to NASA. NASA is building a jumbo rocket, the Space Launch System, that is supposed to be ready for its inaugural, uncrewed test flight in 2017. The second launch, carrying a crew in NASA’s new Orion capsule for the first time, isn’t scheduled until 2021.

Tito’s plan would essentially borrow the SLS for the Mars mission, if NASA agreed. And NASA would have to pay for a lot of this. Tito described Inspiration Mars as a “philanthropic partnership with government.” He said private donors would probably give about $300 million for the mission, and the government would need to provide about $700 million — in addition to the money NASA is already spending, under current programs, on rocket and spacecraft development.

NASA reacted coolly to Tito’s proposal.

“Inspiration Mars’s proposed schedule is a significant challenge due to life support systems, space radiation response, habitats and the human psychology of being in a small spacecraft for over 500 days,” spokesman David Weaver said in a statement. “The agency is willing to share technical and programmatic expertise with Inspiration Mars but is unable to commit to sharing expenses with them. However, we remain open to further collaboration as their proposal and plans for a later mission develop.”

Tito’s Inspiration Mars Foundation released a feasibility study Wednesday that described the proposed mission architecture, which includes using the new Cygnus spacecraft developed by Dulles, Va.,-based Orbital Sciences.

The technological challenges of sending people to Mars, keeping them alive and returning them safely to Earth are considerable, but perhaps the greatest challenge in this case is the timing. There’s virtually no wiggle room for this mission. The Tito plan would require that NASA and the private partners adopt the project immediately and speed up work on certain key components.

The ideal planetary alignment of Mars and Earth happens once every 15 years, and it presents a narrow launch window. The mission would have to begin between Christmas Day 2017 and Jan. 5, 2018, to take advantage of the orbital dynamics of the planets.

“I think it’s totally implausible for 2017,” said John Logsdon, professor emeritus at George Washington University’s Space Policy Institute. He said there’s a slight chance that the 2021 backup mission could happen “if the stars align.”

Two launches would be required for the Mars flyby mission, according to the Inspiration Mars feasibility study. First, the big SLS rocket would launch into low-Earth orbit the empty Cygnus spacecraft, plus other hardware needed for the mission. Then, the two astronauts would blast into orbit on a commercial rocket and spacecraft that have yet to be identified (there is a competition underway among private companies to develop rockets and capsules to ferry NASA astronauts to the international space station).

The astronauts in their commercial capsule would rendezvous with the Inspiration Mars vehicle and climb inside the Cygnus spacecraft. The upper stage of the SLS would then ignite and rocket the Inspiration Mars vehicle to Mars. At the end of the mission, more than a year later, the crew would reenter the Earth’s atmosphere in a “pod” designed to survive the extreme speed and heat of reentry.

“We fully recognize what we’re asking is incredibly challenging. An in­cred­ibly hard thing to do,” Tito said in a conference call with reporters. He repeatedly mentioned the possibility that another country could beat the United States to Mars, saying that would be akin to the Soviet Union’s 1957 launch of the first satellite, Sputnik. “We firmly believe that Inspiration Mars is our last chance to be first in space and stay first in space,” Tito said.

“This will be one of the great historical events of the last 500 years,” he said. “This will, in my view, rock the world.”

http://www.washingtonpost.com/national/health-science/going-to-mars-billionaire-dennis-tito-plans-manned-mission-with-possible-2017-launch/2013/11/20/b859bc76-51e8-11e3-9fe0-fd2ca728e67c_story.html?hpid=z4

Thanks to Kebmodee for bringing this to the attention of the It’s Interesting community.