Physicists discover a surprisingly straightforward way to turn light into matter

By Jonathan Webb

The design, published in Nature Photonics, adapts technology used in fusion research.

Several locations could now enter a race to convert photons into positrons and electrons for the very first time.

This would prove an 80-year-old theory by Breit and Wheeler, who themselves thought physical proof was impossible.

Now, according to researchers from Imperial College London, that proof is within reach.

Prof Steven Rose and his PhD student, Oliver Pike, told the BBC it could happen within a year.

“With a good experimental team, it should be quite doable,” said Mr Pike.

If the experiment comes to fruition, it will be the final piece in a puzzle that began in 1905, when Einstein accounted for the photoelectric effect with his model of light as a particle.

Several other basic interactions between matter and light have been described and subsequently proved by experiment, including Dirac’s 1930 proposal that an electron and its antimatter counterpart, a positron, could be annihilated upon collision to produce two photons.

Breit and Wheeler’s theoretical prediction of the reverse – that two photons could crash together and produce matter (a positron and an electron) – has been difficult to observe.

“The reason this is very hard to see in the lab is that you need to throw an awful lot of photons together – because the probability of any two of them interconverting is very low,” Prof Rose explained.

His team proposes gathering that vast number of very high-energy photons by firing an intense beam of gamma-rays into a further cloud of photons, created within a tiny, gold-lined cylinder.

That cylinder is called a “hohlraum”, German for “hollow space”, because it contains a vacuum, and it is usually used in nuclear fusion research. The cloud of photons inside it is made from extraordinarily intense X-rays and is about as hot as the Sun.

Hitting this very dense cloud of photons with the powerful gamma-ray beam raises the probability of collisions that will make matter – and history.

“It’s pretty amazing really,” said Mr Pike. He says it took some time to realise the value of the scheme, which he and two colleagues initially jotted down on scrap paper over several cups of coffee.

“For the first 12 hours or so, we didn’t quite appreciate its magnitude.”

But their subsequent calculations showed that the design, theoretically at least, has more than enough power to crack the challenge set by Breit and Wheeler in the 1930s.

“All the ingredients are there,” agrees Sir Peter Knight, an emeritus professor at Imperial College who was not involved in the research but describes it as a “really clever idea”.

“I think people will seriously start to have a crack at this,” Prof Knight told BBC News, though he cautioned that there were a lot of things to get right when putting the design into practice.

“If it’s done in a year, then they’ve done bloody well! I think it might take a bit longer.”

Some healthy scientific competition may speed up the process.

There are at least three facilities with the necessary equipment to test out the new proposal, including the Atomic Weapons Establishment in Oldham.

“The race to carry out and complete the experiment is on,” said Mr Pike.

http://www.bbc.com/news/science-environment-27470034

Thanks to Da Brayn for bringing this to the attention of the It’s Interesting community.

18 Things Highly Creative People Do Differently

Creativity works in mysterious and often paradoxical ways. Creative thinking is a stable, defining characteristic in some personalities, but it may also change based on situation and context. Inspiration and ideas often arise seemingly out of nowhere and then fail to show up when we most need them, and creative thinking requires complex cognition yet is completely distinct from the thinking process.

Neuroscience paints a complicated picture of creativity. As scientists now understand it, creativity is far more complex than the right-left brain distinction would have us think (the theory being that left brain = rational and analytical, right brain = creative and emotional). In fact, creativity is thought to involve a number of cognitive processes, neural pathways and emotions, and we still don’t have the full picture of how the imaginative mind works.

And psychologically speaking, creative personality types are difficult to pin down, largely because they’re complex, paradoxical and tend to avoid habit or routine. And it’s not just a stereotype of the “tortured artist” — artists really may be more complicated people. Research has suggested that creativity involves the coming together of a multitude of traits, behaviors and social influences in a single person.

“It’s actually hard for creative people to know themselves because the creative self is more complex than the non-creative self,” Scott Barry Kaufman, a psychologist at New York University who has spent years researching creativity, told The Huffington Post. “The things that stand out the most are the paradoxes of the creative self … Imaginative people have messier minds.”

While there’s no “typical” creative type, there are some tell-tale characteristics and behaviors of highly creative people. Here are 18 things they do differently.

They daydream.

Creative types know, despite what their third-grade teachers may have said, that daydreaming is anything but a waste of time.

According to Kaufman and psychologist Rebecca L. McMillan, who co-authored a paper titled “Ode To Positive Constructive Daydreaming,” mind-wandering can aid in the process of “creative incubation.” And of course, many of us know from experience that our best ideas come seemingly out of the blue when our minds are elsewhere.

Although daydreaming may seem mindless, a 2012 study suggested it could actually involve a highly engaged brain state — daydreaming can lead to sudden connections and insights because it’s related to our ability to recall information in the face of distractions. Neuroscientists have also found that daydreaming involves the same brain processes associated with imagination and creativity.

They observe everything.

The world is a creative person’s oyster — they see possibilities everywhere and are constantly taking in information that becomes fodder for creative expression. As Henry James is widely quoted, a writer is someone on whom “nothing is lost.”

The writer Joan Didion kept a notebook with her at all times, and said that she wrote down observations about people and events as, ultimately, a way to better understand the complexities and contradictions of her own mind:

“However dutifully we record what we see around us, the common denominator of all we see is always, transparently, shamelessly, the implacable ‘I,'” Didion wrote in her essay On Keeping A Notebook. “We are talking about something private, about bits of the mind’s string too short to use, an indiscriminate and erratic assemblage with meaning only for its marker.”

They work the hours that work for them.

Many great artists have said that they do their best work either very early in the morning or late at night. Vladimir Nabokov started writing immediately after he woke up at 6 or 7 a.m., and Frank Lloyd Wright made a practice of waking up at 3 or 4 a.m. and working for several hours before heading back to bed. No matter when it is, individuals with high creative output will often figure out what time it is that their minds start firing up, and structure their days accordingly.

They take time for solitude.

In order to be open to creativity, one must have the capacity for constructive use of solitude. One must overcome the fear of being alone,” wrote the American existential psychologist Rollo May.

Artists and creatives are often stereotyped as being loners, and while this may not actually be the case, solitude can be the key to producing their best work. For Kaufman, this links back to daydreaming — we need to give ourselves the time alone to simply allow our minds to wander.

“You need to get in touch with that inner monologue to be able to express it,” he says. “It’s hard to find that inner creative voice if you’re … not getting in touch with yourself and reflecting on yourself.”

They turn life’s obstacles around.

Many of the most iconic stories and songs of all time have been inspired by gut-wrenching pain and heartbreak — and the silver lining of these challenges is that they may have been the catalyst to create great art. An emerging field of psychology called post-traumatic growth is suggesting that many people are able to use their hardships and early-life trauma for substantial creative growth. Specifically, researchers have found that trauma can help people to grow in the areas of interpersonal relationships, spirituality, appreciation of life, personal strength, and — most importantly for creativity — seeing new possibilities in life.

“A lot of people are able to use that as the fuel they need to come up with a different perspective on reality,” says Kaufman. “What’s happened is that their view of the world as a safe place, or as a certain type of place, has been shattered at some point in their life, causing them to go on the periphery and see things in a new, fresh light, and that’s very conducive to creativity.”

They seek out new experiences.

Creative people love to expose themselves to new experiences, sensations and states of mind — and this openness is a significant predictor of creative output.

“Openness to experience is consistently the strongest predictor of creative achievement,” says Kaufman. “This consists of lots of different facets, but they’re all related to each other: Intellectual curiosity, thrill seeking, openness to your emotions, openness to fantasy. The thing that brings them all together is a drive for cognitive and behavioral exploration of the world, your inner world and your outer world.”

They “fail up.”

Resilience is practically a prerequisite for creative success, says Kaufman. Doing creative work is often described as a process of failing repeatedly until you find something that sticks, and creatives — at least the successful ones — learn not to take failure so personally.

“Creatives fail and the really good ones fail often,” Forbes contributor Steven Kotler wrote in a piece on Einstein’s creative genius.

They ask the big questions.
Creative people are insatiably curious — they generally opt to live the examined life, and even as they get older, maintain a sense of curiosity about life. Whether through intense conversation or solitary mind-wandering, creatives look at the world around them and want to know why, and how, it is the way it is.

They people-watch.

Observant by nature and curious about the lives of others, creative types often love to people-watch — and they may generate some of their best ideas from it.

“[Marcel] Proust spent almost his whole life people-watching, and he wrote down his observations, and it eventually came out in his books,” says Kaufman. “For a lot of writers, people-watching is very important … They’re keen observers of human nature.”

They take risks.

Part of doing creative work is taking risks, and many creative types thrive off of taking risks in various aspects of their lives.

“There is a deep and meaningful connection between risk taking and creativity and it’s one that’s often overlooked,” contributor Steven Kotler wrote in Forbes. “Creativity is the act of making something from nothing. It requires making public those bets first placed by imagination. This is not a job for the timid. Time wasted, reputation tarnished, money not well spent — these are all by-products of creativity gone awry.”

They view all of life as an opportunity for self-expression.

Nietzsche believed that one’s life and the world should be viewed as a work of art. Creative types may be more likely to see the world this way, and to constantly seek opportunities for self-expression in everyday life.

“Creative expression is self-expression,” says Kaufman. “Creativity is nothing more than an individual expression of your needs, desires and uniqueness.”

They follow their true passions.

Creative people tend to be intrinsically motivated — meaning that they’re motivated to act from some internal desire, rather than a desire for external reward or recognition. Psychologists have shown that creative people are energized by challenging activities, a sign of intrinsic motivation, and the research suggests that simply thinking of intrinsic reasons to perform an activity may be enough to boost creativity.

“Eminent creators choose and become passionately involved in challenging, risky problems that provide a powerful sense of power from the ability to use their talents,” write M.A. Collins and T.M. Amabile in The Handbook of Creativity.

They get out of their own heads.

Kaufman argues that another purpose of daydreaming is to help us to get out of our own limited perspective and explore other ways of thinking, which can be an important asset to creative work.

“Daydreaming has evolved to allow us to let go of the present,” says Kaufman. “The same brain network associated with daydreaming is the brain network associated with theory of mind — I like calling it the ‘imagination brain network’ — it allows you to imagine your future self, but it also allows you to imagine what someone else is thinking.”

Research has also suggested that inducing “psychological distance” — that is, taking another person’s perspective or thinking about a question as if it was unreal or unfamiliar — can boost creative thinking.

They lose track of the time.
Creative types may find that when they’re writing, dancing, painting or expressing themselves in another way, they get “in the zone,” or what’s known as a flow state, which can help them to create at their highest level. Flow is a mental state when an individual transcends conscious thought to reach a heightened state of effortless concentration and calmness. When someone is in this state, they’re practically immune to any internal or external pressures and distractions that could hinder their performance.

You get into the flow state when you’re performing an activity you enjoy that you’re good at, but that also challenges you — as any good creative project does.

“[Creative people] have found the thing they love, but they’ve also built up the skill in it to be able to get into the flow state,” says Kaufman. “The flow state requires a match between your skill set and the task or activity you’re engaging in.”

They surround themselves with beauty.

Creatives tend to have excellent taste, and as a result, they enjoy being surrounded by beauty.

A study recently published in the journal Psychology of Aesthetics, Creativity, and the Arts showed that musicians — including orchestra musicians, music teachers, and soloists — exhibit a high sensitivity and responsiveness to artistic beauty.

They connect the dots.

If there’s one thing that distinguishes highly creative people from others, it’s the ability to see possibilities where other don’t — or, in other words, vision. Many great artists and writers have said that creativity is simply the ability to connect the dots that others might never think to connect.

In the words of Steve Jobs:

“Creativity is just connecting things. When you ask creative people how they did something, they feel a little guilty because they didn’t really do it, they just saw something. It seemed obvious to them after a while. That’s because they were able to connect experiences they’ve had and synthesize new things.”

They constantly shake things up.

Diversity of experience, more than anything else, is critical to creativity, says Kaufman. Creatives like to shake things up, experience new things, and avoid anything that makes life more monotonous or mundane.

“Creative people have more diversity of experiences, and habit is the killer of diversity of experience,” says Kaufman.

They make time for mindfulness.

Creative types understand the value of a clear and focused mind — because their work depends on it. Many artists, entrepreneurs, writers and other creative workers, such as David Lynch, have turned to meditation as a tool for tapping into their most creative state of mind.

And science backs up the idea that mindfulness really can boost your brain power in a number of ways. A 2012 Dutch study suggested that certain meditation techniques can promote creative thinking. And mindfulness practices have been linked with improved memory and focus, better emotional well-being, reduced stress and anxiety, and improved mental clarity — all of which can lead to better creative thought.

http://www.huffingtonpost.com/2014/03/04/creativity-habits_n_4859769.html

Stephen Hawking: ‘There are no black holes’

Stephen Hawking's black hole theory
Notion of an ‘event horizon’, from which nothing can escape, is incompatible with quantum theory, physicist claims.

by Zeeya Merali

Most physicists foolhardy enough to write a paper claiming that “there are no black holes” — at least not in the sense we usually imagine — would probably be dismissed as cranks. But when the call to redefine these cosmic crunchers comes from Stephen Hawking, it’s worth taking notice. In a paper posted online, the physicist, based at the University of Cambridge, UK, and one of the creators of modern black-hole theory, does away with the notion of an event horizon, the invisible boundary thought to shroud every black hole, beyond which nothing, not even light, can escape.

In its stead, Hawking’s radical proposal is a much more benign “apparent horizon”, which only temporarily holds matter and energy prisoner before eventually releasing them, albeit in a more garbled form.

“There is no escape from a black hole in classical theory,” Hawking told Nature. Quantum theory, however, “enables energy and information to escape from a black hole”. A full explanation of the process, the physicist admits, would require a theory that successfully merges gravity with the other fundamental forces of nature. But that is a goal that has eluded physicists for nearly a century. “The correct treatment,” Hawking says, “remains a mystery.”

Hawking posted his paper on the arXiv preprint server on 22 January1. He titled it, whimsically, ‘Information preservation and weather forecasting for black holes’, and it has yet to pass peer review. The paper was based on a talk he gave via Skype at a meeting at the Kavli Institute for Theoretical Physics in Santa Barbara, California, in August 2013.

Hawking’s new work is an attempt to solve what is known as the black-hole firewall paradox, which has been vexing physicists for almost two years, after it was discovered by theoretical physicist Joseph Polchinski of the Kavli Institute and his colleagues.

In a thought experiment, the researchers asked what would happen to an astronaut unlucky enough to fall into a black hole. Event horizons are mathematically simple consequences of Einstein’s general theory of relativity that were first pointed out by the German astronomer Karl Schwarzschild in a letter he wrote to Einstein in late 1915, less than a month after the publication of the theory. In that picture, physicists had long assumed, the astronaut would happily pass through the event horizon, unaware of his or her impending doom, before gradually being pulled inwards — stretched out along the way, like spaghetti — and eventually crushed at the ‘singularity’, the black hole’s hypothetical infinitely dense core.

But on analysing the situation in detail, Polchinski’s team came to the startling realization that the laws of quantum mechanics, which govern particles on small scales, change the situation completely. Quantum theory, they said, dictates that the event horizon must actually be transformed into a highly energetic region, or ‘firewall’, that would burn the astronaut to a crisp.

This was alarming because, although the firewall obeyed quantum rules, it flouted Einstein’s general theory of relativity. According to that theory, someone in free fall should perceive the laws of physics as being identical everywhere in the Universe — whether they are falling into a black hole or floating in empty intergalactic space. As far as Einstein is concerned, the event horizon should be an unremarkable place.

Now Hawking proposes a third, tantalizingly simple, option. Quantum mechanics and general relativity remain intact, but black holes simply do not have an event horizon to catch fire. The key to his claim is that quantum effects around the black hole cause space-time to fluctuate too wildly for a sharp boundary surface to exist.

In place of the event horizon, Hawking invokes an “apparent horizon”, a surface along which light rays attempting to rush away from the black hole’s core will be suspended. In general relativity, for an unchanging black hole, these two horizons are identical, because light trying to escape from inside a black hole can reach only as far as the event horizon and will be held there, as though stuck on a treadmill. However, the two horizons can, in principle, be distinguished. If more matter gets swallowed by the black hole, its event horizon will swell and grow larger than the apparent horizon.

Conversely, in the 1970s, Hawking also showed that black holes can slowly shrink, spewing out ‘Hawking radiation’. In that case, the event horizon would, in theory, become smaller than the apparent horizon. Hawking’s new suggestion is that the apparent horizon is the real boundary. “The absence of event horizons means that there are no black holes — in the sense of regimes from which light can’t escape to infinity,” Hawking writes.

“The picture Hawking gives sounds reasonable,” says Don Page, a physicist and expert on black holes at the University of Alberta in Edmonton, Canada, who collaborated with Hawking in the 1970s. “You could say that it is radical to propose there’s no event horizon. But these are highly quantum conditions, and there’s ambiguity about what space-time even is, let alone whether there is a definite region that can be marked as an event horizon.”

Although Page accepts Hawking’s proposal that a black hole could exist without an event horizon, he questions whether that alone is enough to get past the firewall paradox. The presence of even an ephemeral apparent horizon, he cautions, could well cause the same problems as does an event horizon.

Unlike the event horizon, the apparent horizon can eventually dissolve. Page notes that Hawking is opening the door to a scenario so extreme “that anything in principle can get out of a black hole”. Although Hawking does not specify in his paper exactly how an apparent horizon would disappear, Page speculates that when it has shrunk to a certain size, at which the effects of both quantum mechanics and gravity combine, it is plausible that it could vanish. At that point, whatever was once trapped within the black hole would be released (although not in good shape).

If Hawking is correct, there could even be no singularity at the core of the black hole. Instead, matter would be only temporarily held behind the apparent horizon, which would gradually move inward owing to the pull of the black hole, but would never quite crunch down to the centre. Information about this matter would not destroyed, but would be highly scrambled so that, as it is released through Hawking radiation, it would be in a vastly different form, making it almost impossible to work out what the swallowed objects once were.

“It would be worse than trying to reconstruct a book that you burned from its ashes,” says Page. In his paper, Hawking compares it to trying to forecast the weather ahead of time: in theory it is possible, but in practice it is too difficult to do with much accuracy.

Polchinski, however, is sceptical that black holes without an event horizon could exist in nature. The kind of violent fluctuations needed to erase it are too rare in the Universe, he says. “In Einstein’s gravity, the black-hole horizon is not so different from any other part of space,” says Polchinski. “We never see space-time fluctuate in our own neighbourhood: it is just too rare on large scales.”

Raphael Bousso, a theoretical physicist at the University of California, Berkeley, and a former student of Hawking’s, says that this latest contribution highlights how “abhorrent” physicists find the potential existence of firewalls. However, he is also cautious about Hawking’s solution. “The idea that there are no points from which you cannot escape a black hole is in some ways an even more radical and problematic suggestion than the existence of firewalls,” he says. “But the fact that we’re still discussing such questions 40 years after Hawking’s first papers on black holes and information is testament to their enormous significance.”

http://www.nature.com/news/stephen-hawking-there-are-no-black-holes-1.14583?WT.mc-id=GPL_NatureNews

Stretch Or Splat? How A Black Hole Kills You Matters … A Lot

blackhole1a_wide-7ee72dbf78e99e35e09cf719b0596343796579fe-s40-c85
“Our hypothesis is that the inside of a black hole — it may not be there. Probably that’s the end of space itself. There’s no inside at all.”
– Joe Polchinski, physicist

It could rightly be called the most massive debate of the year: Physicists are locked in an argument over what happens if you fall into a black hole.

On one side are those who support the traditional view from Albert Einstein. On the other, backers of a radical new theory that preserves the very core of modern physics by destroying space itself.

Regardless of who’s right, the new take on black holes could lead to a better understanding of the universe, says Leonard Susskind, a physicist at Stanford University. “This is the kind of thing where progress comes from.”

Black holes are regions of space so dense that nothing, not even light, can escape.

There’s a long-standing view about what would happen if you fell into one of these holes. At first, you’re not going to notice much of anything — but the black hole’s gravity is getting stronger and stronger. And eventually you pass a point of no return.

“It’s kind of like you’re rowing on Niagara Falls, and you pass the point [where] you can’t row fast enough to escape the current,” Susskind says. “Well, you’re doomed at that point. But passing the point of no return — you wouldn’t even notice it.”

Now you can’t get out. And gravity from the black hole is starting to pull on your feet more than your head. “The gravity wants to sort of stretch you in one direction and squeeze you in another,” says Joe Polchinski, a physicist at the University of California, Santa Barbara. He says the technical term for this stretching is spaghettification.

“It’d be kind of medieval,” says Polchinkski. “It’d be like something on Game of Thrones.”

In Einstein’s version of events, that’s the end. But Polchinski has a new version of things: “Our hypothesis is that the inside of a black hole — it may not be there,” he says.

So what’s inside the black hole? Nothing, Polchinski says. Actually even less than that. “Probably that’s the end of space itself; there’s no inside at all.”
This “no inside” idea may sound outrageous, but it’s actually a stab at solving an even bigger problem with black holes.

According to the dominant theory of physics — quantum mechanics — information can never disappear from the universe. Put another way, the atoms in your body are configured in a particular way. They can be rearranged (radically if you happen to slip inside a black hole). But it should always be possible, at least in theory, to look at all those rearranged atoms and work out that they were once part of a human of your dimensions and personality.

This rule is absolutely fundamental. “Everything is built on it,” says Susskind. “If it were violated, everything falls apart.”

For a long time, black holes stretched this rule, but they didn’t break it. People thought that if you fell into a black hole, your spaghettified remains would always be in there, trapped beyond the point of no return.

That is, until the famous physicist Stephen Hawking came along. In the 1970s, Hawking showed that, according to quantum mechanics, a black hole evaporates — very slowly, it vanishes. And that breaks the fundamental rule because all that information that was once in your spaghettified remains vanishes with it.

This didn’t seem to bother Hawking. (“I’m not a psychiatrist, and I can’t psychoanalyze him,” Susskind says.) But it has bothered a lot of other physicists since.

And in the intervening years, work by another theorist — Juan Maldacena, with Princeton’s Institute for Advanced Study — seems to show that Hawking was wrong. Information has to get out of the black hole … somehow. But nobody knows how.

So Polchinski took another look. “We took Hawking’s original argument,” he says, “and very carefully ran it backwards.”

And Polchinski and his colleagues found one way to keep things from vanishing when they fall inside a black hole — they got rid of the inside. By tearing apart the fabric of space beyond the point of no return, the group was able to preserve the information rule of quantum mechanics.

In this version, anything falling into a black hole is instantly vaporized at the point of no return, in a fiery storm of quantum particles. Particles coming from the hole collectively carry away any and all information about the object that’s falling in.

So in Polchinski’s version, when you fall into a black hole, you don’t disappear. Instead, you smack into the end of the universe.

“You just come to the end of space, and there’s nothing beyond it. Terminated,” Susskind says. All the information once contained in your atoms is re-radiated in a quantum mechanical fire.

This new version seems too radical to Susskind. “I don’t think this is true,” he says. “In fact, I think almost nobody thinks this is true — that space falls apart inside a black hole.”

Even Polchinski still feels that black holes should have insides. “My gut believes that the black hole has an interior,” he says. But, he adds, nobody’s been able to disprove his hypothesis that it doesn’t.

“Every counterargument I’ve seen is flawed,” Polchinski says.

Susskind agrees: “Nobody quite knows exactly what’s wrong with their argument — and that’s what makes this so important and interesting.”

And as crazy as it sounds, this is progress. In the year ahead, Susskind hopes someone can find the flaw in Polchinski’s argument, just the way Polchinski found a flaw in Stephen Hawking’s argument. But it will be awhile before we understand black holes inside and out.

http://www.npr.org/2013/12/27/256897343/stretch-or-splat-how-a-black-hole-kills-you-matters-a-lot

Physicists discover ‘clearest evidence yet’ that the Universe is a hologram

god_particle
1_14328

At a black hole, Albert Einstein’s theory of gravity apparently clashes with quantum physics, but that conflict could be solved if the Universe were a holographic projection.

A team of physicists have provided what has been described by the journal Nature as the “clearest evidence yet” that our universe is a hologram.

The new research could help reconcile one of modern physics’ most enduring problems : the apparent inconsistencies between the different models of the universe as explained by quantum physics and Einstein’s theory of gravity.

The two new scientific papers are the culmination of years’ work led by Yoshifumi Hyakutake of Ibaraki University in Japan, and deal with hypothetical calculations of the energies of black holes in different universes.

The idea of the universe existing as a ‘hologram’ doesn’t refer to a Matrix-like illusion, but the theory that the three dimensions we perceive are actually just “painted” onto the cosmological horizon – the boundary of the known universe.

If this sounds paradoxical, try to imagine a holographic picture that changes as you move it. Although the picture is two dimensional, observing it from different locations creates the illusion that it is 3D.

This model of the universe helps explain some inconsistencies between general relativity (Einstein’s theory) and quantum physics. Although Einstein’s work underpins much of modern physics, at certain extremes (such as in the middle of a black hole) the principles he outlined break down and the laws of quantum physics take over.

The traditional method of reconciling these two models has come from the 1997 work of theoretical physicist Juan Maldacena, whose ideas built upon string theory. This is one of the most well respected ‘theories of everything’ (Stephen Hawking is a fan) and it posits that one-dimensional vibrating objects known as ‘strings’ are the elementary particles of the universe.

Maldacena has welcomed the new research by Hyakutake and his team, telling the journal Nature that the findings are “an interesting way to test many ideas in quantum gravity and string theory.”

Leonard Susskind, a theoretical physicist regarded as one of the fathers of string theory, added that the work by the Japanese team “numerically confirmed, perhaps for the first time, something we were fairly sure had to be true, but was still a conjecture.”

Here is the original press release from Nature:

A team of physicists has provided some of the clearest evidence yet that our Universe could be just one big projection.

In 1997, theoretical physicist Juan Maldacena proposed1 that an audacious model of the Universe in which gravity arises from infinitesimally thin, vibrating strings could be reinterpreted in terms of well-established physics. The mathematically intricate world of strings, which exist in nine dimensions of space plus one of time, would be merely a hologram: the real action would play out in a simpler, flatter cosmos where there is no gravity.

Maldacena’s idea thrilled physicists because it offered a way to put the popular but still unproven theory of strings on solid footing — and because it solved apparent inconsistencies between quantum physics and Einstein’s theory of gravity. It provided physicists with a mathematical Rosetta stone, a ‘duality’, that allowed them to translate back and forth between the two languages, and solve problems in one model that seemed intractable in the other and vice versa. But although the validity of Maldacena’s ideas has pretty much been taken for granted ever since, a rigorous proof has been elusive.

In two papers posted on the arXiv repository, Yoshifumi Hyakutake of Ibaraki University in Japan and his colleagues now provide, if not an actual proof, at least compelling evidence that Maldacena’s conjecture is true.

In one paper2, Hyakutake computes the internal energy of a black hole, the position of its event horizon (the boundary between the black hole and the rest of the Universe), its entropy and other properties based on the predictions of string theory as well as the effects of so-called virtual particles that continuously pop into and out of existence. In the other3, he and his collaborators calculate the internal energy of the corresponding lower-dimensional cosmos with no gravity. The two computer calculations match.

“It seems to be a correct computation,” says Maldacena, who is now at the Institute for Advanced Study in Princeton, New Jersey and who did not contribute to the team’s work.

The findings “are an interesting way to test many ideas in quantum gravity and string theory”, Maldacena adds. The two papers, he notes, are the culmination of a series of articles contributed by the Japanese team over the past few years. “The whole sequence of papers is very nice because it tests the dual [nature of the universes] in regimes where there are no analytic tests.”

“They have numerically confirmed, perhaps for the first time, something we were fairly sure had to be true, but was still a conjecture — namely that the thermodynamics of certain black holes can be reproduced from a lower-dimensional universe,” says Leonard Susskind, a theoretical physicist at Stanford University in California who was among the first theoreticians to explore the idea of holographic universes.

Neither of the model universes explored by the Japanese team resembles our own, Maldacena notes. The cosmos with a black hole has ten dimensions, with eight of them forming an eight-dimensional sphere. The lower-dimensional, gravity-free one has but a single dimension, and its menagerie of quantum particles resembles a group of idealized springs, or harmonic oscillators, attached to one another.

Nevertheless, says Maldacena, the numerical proof that these two seemingly disparate worlds are actually identical gives hope that the gravitational properties of our Universe can one day be explained by a simpler cosmos purely in terms of quantum theory.

http://www.nature.com/news/simulations-back-up-theory-that-universe-is-a-hologram-1.14328#/b1

New research shows that workplace clutter may increase creativity

Severe-Workplace-Clutter

Here’s a toast to the slob in the office, the gal with so much junk on her desk she can’t find her telephone. All that clutter may be part of the reason she is so creative.

For years, we’ve been told that piles of personal rubbish have got to be a liability. Now there’s a flip side to that theorem.

Researchers at the University of Minnesota decided to take a look at a long-established principle of human honesty and productivity — keep your work area clean and you will be more likely to work your tail off, stay honest, be generous with your coworkers, and on and on.

Cleanliness, after all, is next to godliness.

“We were thinking about doing a paper showing how being tidy makes people kind of do the right thing,” psychologist Kathleen Vohs, lead author of a study in the journal Psychological Science, said in a telephone interview. “And then we started challenging ourselves. Is there anything that goes along with a messy environment that could be good?”

So Vohs and her co-workers conducted a series of experiments in Holland and the United States to see if there’s an up-side to untidiness. The finding, she said, surprised even the researchers.

A messy work environment, the research suggested, can bring out a person’s creativity and lead to the birth of bold, new ideas. In other words, a less- than-perfect work environment can make a person more likely to think out of the box, or at least above the horizon of those neat people in the office.

That doesn’t mean you can set a nitwit in front of a cluttered desk and end up with another Einstein, who is said to have muttered these immortal words: “If a cluttered desk is a sign of a cluttered mind, of what, then, is an empty desk a sign?”

Numerous historic photos of Einstein’s office show he was no neat freak.

No amount of clutter is going to make an empty brain creative, but this research indicates that a little clutter may bring out the freshest and most creative side of you.

“The environment doesn’t create something that isn’t already there,” Vohs said. “To the extent that you are creative, it pulls it out of you.”

Not a lot of researchers have taken up the banner of messy desks, so there’s not much to compare this work with, but the research involved a large number of participants, both young and old, and it led to these conclusions:

Sociology’s “broken windows theory” is not entirely accurate. According to Vohs’ study, that theory “posits that minor signs of disorder can cause much bigger consequences, such as delinquency and criminality.” But her research suggested a less-pristine environment can leave persons free to turn to creativity instead of crime.

“Orderly environments would encourage adherence to social convention and overall conservatism, whereas disorderly environments would encourage people to seek novelty and unconventional routes.”

“Our findings imply that varying the environment can be an effective way to shape behavior.”

Those findings resulted from three experiments in which participants were assigned tasks while seated in a neat, orderly office, or in an office that was identical in every way except it was filled with clutter, such as papers on the floor and stacks of files on the desk.

Thirty-four Dutch students were tested to see if the orderliness of the room had any effect on their generosity and sense of needing to do the right thing. At the end of the experiment, for example, the students were asked to contribute to a worthy cause.

Some 82 percent of the students in the orderly room contributed money, compared to only 47 percent in the disorderly room.

As they left the room, they were offered a treat, either an apple or a piece of candy. Participants from the orderly room were more than three times as likely to take the apple. Moral: orderliness brought out a need do the right thing.

In a second experiment, participants were told to come up with new uses for ping-pong balls to help a manufacturer.

“Participants in the disorderly room generated more highly creative ideas than did participants in the orderly room,” the study said.

In the final experiment, 188 American adults were asked to pick from a list of new options to be added to a restaurant’s menu. Participants from the orderly room were far more likely to pick a healthy option than were participants from a disorderly room.

The researchers described the findings as “robust,” meaning there was little question that the environment directly influenced the behavior of the participants.

“Disorderly environments seem to inspire breaking free of tradition, which can produce fresh insights,” the researchers concluded. “Orderly environments, in contrast, encourage convention and playing it safe.”

Something good can come from either setting, Vohs said. A tidy workplace may help people walk a straight line. A messy desk may help them figure out a new way to keep from walking at all.

http://abcnews.go.com/Technology/tidy-messy-environment-impact-decisions-behavior-study/story?id=19909678

Life jacket helps disabled goldfish swim

Einstein developed swim bladder disease, which caused him to turn upside down and sink to the bottom of his tank.

His owner, warehouse worker Leighton Naylor, was so distressed by the sight of his struggling pet, he knew he had to take matters into his own hands.

“He’s always been a fighter so when he sunk to the bottom one day and couldn’t get back up again it was a very sorry sight. It broke my heart to see him so helpless. He looked so depressed,” said the 32-year-old from Blackpool.

He made Einstein a “floating frame” from recycled tubing, which fits perfectly over the fish’s two-inch long body.

“I wanted to build something that would allow Einstein to move his fins a little bit and be comfortable at the same time,” he said.

“He wriggled a bit a first and he wasn’t too keen on the idea. He kept catching on to plants and getting stuck but since I’ve rearranged the tank to make it disability friendly he’s been absolutely fine.”

http://www.telegraph.co.uk/news/newsvideo/weirdnewsvideo/10013956/Life-jacket-helps-disabled-goldfish-swim-again.html

Supermassive black hole spins at nearly the speed of light

blackhole
This artist’s concept illustrates a supermassive black hole with millions to billions times the mass of our sun. It’s surrounded by matter flowing onto the black hole in what is termed an accretion disk. Also shown is an outflowing jet of energetic particles, believed to be powered by the black hole’s spin. High energy X-radiation lights up the disk, which reflects it, making the disk a source of X-rays. The reflected light enables astronomers to see how fast matter is swirling in the inner region of the disk, and ultimately to measure the black hole’s spin rate.

Nothing can escape a black hole, even light, because to wrench away from its titanic gravitational pull, you’d have to move faster than light is capable of traveling. And nothing can do that, as far as anyone knows. As matter falls into a black hole’s gaping maw, it superheats to millions of degrees, screaming a final cry of X-rays as it is torn apart. At a specific point called an event horizon, the matter disappears and is never heard from again.

A pair of X-ray telescopes recently watched some of these X-ray death gasps and were able to figure out how fast a black hole is spinning. This is “hugely important” for black hole science, according to researchers working with NASA’s Nuclear Spectroscopic Telescope Array, or NuSTAR space telescope. One particularly cool finding: The black hole is spinning almost as fast as Einstein’s theory of gravity says it possibly could. It’s spinning at almost the speed of light.

The galaxy in question is called NGC 1365, which is about twice the size of the Milky Way and located about 60 million light years away. The black hole is about 2 million times more massive than the sun. Scientists using NuSTAR and the European Space Agency’s XMM-Newton satellite wanted to measure how fast it is spinning. This is a key feature of black holes that is related to their size and the way they gobble up stars, gas and even other black holes.

The problem is that black holes are hard to study, because, you know, not even light can escape them. To measure them, you have to measure their effect on their surroundings–like the X-rays emitted by dying matter. This is hard to do because objects between us and them can get in the way, however, making the X-rays look distorted. There have been two competing models explaining why the X-rays look warped: Either gravitational distortion caused by black hole gravity, or distortion caused by intervening clouds of gas and dust.

In this new study, NuSTAR and XMM-Newton set out to determine which one is right. The telescopes carefully traced the X-rays emitted at the very, very edge of the black hole, right near the event horizon, or the point of no return. By combining their distinct viewing abilities, the two telescopes were able to see a wide range of X-ray energies, and figure out that the X-rays are not actually distorted by intervening gas clouds. They look distorted because the black hole is spinning, and its immense gravity warps spacetime as it swirls around. This information was used to tell just how fast the black hole is spinning: Just below the universal speed limit.

Along with new information about this particular black hole, this study suggests that black hole observations can remove a little bit of ambiguity. This will help astronomers continue to unravel the mysteries of these galactic monsters. A paper describing the findings is published last week in Nature.

http://www.popsci.com/science/article/2013-02/new-telescope-discovery-distant-gargantuan-black-hole-spins-near-light-speed

Application of Einstein’s theory of relatively to make a new type of clock may finally allow precise definition of the kilogram

sn-particlemass

A Rolex is nice, but this is a truly elegant timepiece. A new type of clock keeps time by weighing the smallest bits of matter, physicists report. Compared with standard atomic clocks, which work differently, the new clock keeps lousy time. However, by connecting mass and time the technique could lead to a quantum-mechanical redefinition of the kilogram.

“This gorgeous experiment shows that the road to redefining the kilogram is opening up,” says John Hall, a physicist at JILA, a laboratory run jointly by the University of Colorado, Boulder, and the National Institute of Standards and Technology.

A standard atomic clock takes advantage of the fact that an atom can absorb electromagnetic radiation such as light at certain frequencies as its internal structure jumps from one “quantum state” to another. The clock essentially exposes atoms to radiation tuned to such a frequency, which then serves as the ticking of the clock. The atomic clocks that keep official world time are accurate to 3 parts in 1016, so they would gain or lose less than a second in 100 million years.

It should be possible to keep time in a different way, says Holger Müller, a physicist at the University of California, Berkeley. Any massive particle must be described by a quantum wave that oscillates up and down even if the particle just sits there. The heavier the atom is, the higher the frequency of that flapping, which is known as the Compton frequency. In principle, the quantum oscillation can be used to keep time.

In practice, the Compton frequency for an atom is far too high to be measured by any electronic counter—something like a million-billion-billion cycles per second. So Müller, his student Shau-Yu Lan, and colleagues devised a way to track it in an experiment that exploits Albert Einstein’s theory of relativity, as they report online this week in Science.

The researchers start with a puff of cesium atoms that falls through space toward a detector. Along the way, the atoms encounter pulses of two opposing lasers with slightly different frequencies that gently nudge the atoms without making their inner structure change. The pulses split the cloud in two, and one half of the cloud falls as normal. The other gets pushed up away from the first half and then gets pushed back toward it to catch up.

Here’s where the relativity enters. From the perspective of the un-nudged half of the cloud, the second half moves away and then moves back. Because that second half is moving at a few centimeters per second, its time should appear to slow down just a bit thanks to the weird time dilation predicted by Einstein’s theory of special relativity. So the quantum wave for that half of the cloud oscillates slightly slower than the one for the first half of the cloud.

When the clouds recombine, that difference in oscillations affects how they overlap and “interfere.” If the researchers tune the difference in the two lasers’ frequency just right, the recombining waves will interfere “constructively” so that the cloud falls into the detector. And in that condition, a simple equation relates the “difference frequency,” which can be read out like a clock’s ticking, to the Compton frequency of the atoms and the much lower average frequency of the two lasers.

This is almost what the researchers want, except for the presence of the pesky average frequency of the lasers. So long as that frequency remains as an independent input, the whole scheme relies on whatever clock is used to set it, and is not itself an independent clock. To get around that problem, the researchers employ an elaborate feedback system called a frequency comb that fixes the average frequency of the lasers at a known multiple of the difference frequency. The average laser frequency then drops out of the equation, leaving the difference frequency set to a known fraction of the Compton frequency. The rate of the clock’s ticking is thus set by the cesium atom’s mass alone.

The experiment is a “tour de force,” says Hall, who shared the Nobel Prize in physics in 2005 for his role in developing the frequency comb. However, the rig’s precision is only a part in 100 million, he says, so any claim that it can compete with atomic clocks “leads one to believe that smoking a certain substance is legal in California.”

The real value of the approach may come in redefining the kilogram, Hall says. The kilogram is the last physical unit in the International System of Units defined by a physical artifact, a platinum-iridium cylinder kept by the International Bureau of Weights and Measures in Sèvres, France. But that standard has been getting steadily lighter over the decades as it is repeatedly cleaned, he says.

The measurement of the Compton frequency offers another way to define the unit. Researchers could simply define Planck’s constant, the number that needs to be multiplied by that frequency to get an atom’s mass. A measurement of an atom’s Compton frequency would then give an exact value of its mass in kilograms. In fact, Müller’s experiment can be reinterpreted as a measurement of Planck’s constant within the existing unit system, Hall says. A team led by François Biraben of the École Normale Supérieure in Paris has used a very similar technique to produce a better measurement, he adds.

Even if the kilogram is redefined in this way, it will still take work to translate it to the macroscopic scale of everyday life. “There’s a long way to go from a microscopic mass of an atom to something you can take to the supermarket to guarantee that when you buy a kilogram of sugar, it’s a kilogram,” says Steven Cundiff, a physicist at JILA. Researchers with a kilogram-definition initiative called the Avogadro Project are trying bridge this gap by fashioning spheres of silicon containing precise numbers of atoms. If scientists can nail down the mass of the silicon atom, the spheres would translate that mass to the macroscopic scale.

http://news.sciencemag.org/sciencenow/2013/01/new-type-of-clock-keeps-time-by-.html?ref=hp