Enormous alien planet discovered in most distant orbit ever seen

2D9859993-exoplanet-hd106906b_blocks_desktop_large

An enormous alien planet — one that is 11 times more massive than Jupiter — was discovered in the most distant orbit yet found around a single parent star.

The newfound exoplanet, dubbed HD 106906 b, dwarfs any planetary body in the solar system, and circles its star at a distance that is 650 times the average distance between the Earth and the sun. The existence of such a massive and distantly orbiting planet raises new questions about how these bizarre worlds are formed, the researchers said.

“This system is especially fascinating because no model of either planet or star formation fully explains what we see,” study lead researcher Vanessa Bailey, a fifth-year graduate student in the University of Arizona’s department of astronomy, said in a statement.

In the most commonly accepted theories of planet formation, it is thought that planets that orbit close to their parent star, such as Earth, began as small, asteroid-type bodies that clumped together in the primordial disk of gas and dust around the burgeoning star. Yet, this process operates too slowly to explain how giant planets form far away from their star, the researcher said.

Alternative hypotheses have suggested that distant giant planets may form in ways similar to mini binary star systems, Bailey said.

“A binary star system can be formed when two adjacent clumps of gas collapse more or less independently to form stars, and these stars are close enough to each other to exert a mutual gravitation attraction and bind them together in an orbit,” she explained.

In the HD 106906 system, the star and planet may have collapsed independently, but the materials that clumped together to form the planet were insufficient for it to grow large enough to ignite into a new star, Bailey said.

But, there are still problems with this scenario. For one, difference between the masses of two stars in a binary system is typically no more than a ratio of 10 to 1.

“In our case, the mass ratio is more than 100-to-1,” Bailey said. “This extreme mass ratio is not predicted from binary star formation theories — just like planet formation theory predicts that we cannot form planets so far from the host star.”

Researchers are also keen to study the new planet, because leftover material from when the planet and star formed can still be detected.

“Systems like this one, where we have additional information about the environment in which the planet resides, have the potential to help us disentangle the various formation models,” Bailey said. “Future observations of the planet’s orbital motion and the primary star’s debris disk may help answer that question.”

The planet HD 106906 b is only 13 million years old, and is still glowing from the residual heat from its formation,” the researchers said. By comparison, Earth formed 4.5 billion years ago, which makes it roughly 350 times older than the newfound exoplanet.

The planet was found using a thermal infrared camera mounted on the Magellan telescope in the Atacama Desert in Chile. The researchers used data from the Hubble Space Telescope to confirm their discovery.

The study, which has been accepted for publication in a future issue of The Astrophysical Journal Letters, could lead to a better understanding of distantly orbiting exoplanets.

“Every new directly detected planet pushes our understanding of how and where planets can form,” study co-investigator Tiffany Meshkat, a graduate student at Leiden Observatory in the Netherlands, said in a statement. “Discoveries like HD 106906 b provide us with a deeper understanding of the diversity of other planetary systems.”

http://www.nbcnews.com/science/enormous-alien-planet-discovered-most-distant-orbit-ever-seen-2D11703497

Thanks to Dr. D for bringing this to the attention of the It’s Interesting community.

Is a secret rogue planet hiding behind Neptune?

 

An as yet undiscovered planet might be orbiting at the dark fringes of the solar system, according to new research.

Too far out to be easily spotted by telescopes, the potential unseen planet appears to be making its presence felt by disturbing the orbits of so-called Kuiper belt objects, said Rodney Gomes, an astronomer at the National Observatory of Brazil in Rio de Janeiro.

Kuiper belt objects are small icy bodies—including some dwarf planets—that lie beyond the orbit of Neptune.

Once considered the ninth planet in our system, the dwarf planet Pluto, for example, is one of the largest Kuiper belt objects, at about 1,400 miles (2,300 kilometers) wide. Dozens of the other objects are hundreds of miles across, and more are being discovered every year.

(See “Three New ‘Plutos’? Possible Dwarf Planets Found.”)

What’s intriguing, Gomes said, is that, according to his new calculations, about a half dozen Kuiper belt objects—including the remote body known as Sedna—are in strange orbits compared to where they should be, based on existing solar system models. (Related: “Pluto Neighbor Gets Downsized.”)

The objects’ unexpected orbits have a few possible explanations, said Gomes, who presented his findings Tuesday at a meeting of the American Astronomical Society in Timberline Lodge, Oregon.

“But I think the easiest one is a planetary-mass solar companion”—a planet that orbits very far out from the sun but that’s massive enough to be having gravitational effects on Kuiper belt objects.

Mystery Planet a Captured Rogue?

For the new work, Gomes analyzed the orbits of 92 Kuiper belt objects, then compared his results to computer models of how the bodies should be distributed, with and without an additional planet.

If there’s no distant world, Gomes concludes, the models don’t produce the highly elongated orbits we see for six of the objects.

How big exactly the planetary body might be isn’t clear, but there are a lot of possibilities, Gomes added.

Based on his calculations, Gomes thinks a Neptune-size world, about four times bigger than Earth, orbiting 140 billion miles (225 billion kilometers) away from the sun—about 1,500 times farther than Earth—would do the trick.

But so would a Mars-size object—roughly half Earth’s size—in a highly elongated orbit that would occasionally bring the body sweeping to within 5 billion miles (8 billion kilometers) of the sun.

Gomes speculates that the mystery object could be a rogue planet that was kicked out of its own star system and later captured by the sun’s gravity. (See “‘Nomad’ Planets More Common Than Thought, May Orbit Black Holes.”)

Or the putative planet could have formed closer to our sun, only to be cast outward by gravitational encounters with other planets.

However, actually finding such a world would be a challenge.

To begin with, the planet might be pretty dim. Also, Gomes’s simulations don’t give astronomers any clue as to where to point their telescopes—”it can be anywhere,” he said.

Other astronomers are intrigued but say they’ll want a lot more proof before they’re willing to agree that the solar system—again—has nine planets. (Also see “Record Nine-Planet Star System Discovered?”)

“Obviously, finding another planet in the solar system is a big deal,” said Rory Barnes, an astronomer at the University of Washington. But, he added, “I don’t think he really has any evidence that suggests it is out there.”

Instead, he added, Gomes “has laid out a way to determine how such a planet could sculpt parts of our solar system. So while, yes, the evidence doesn’t exist yet, I thought the bigger point was that he showed us that there are ways to find that evidence.”

Douglas Hamilton, an astronomer from the University of Maryland, agrees that the new findings are far from definitive.

“What he showed in his probability arguments is that it’s slightly more likely. He doesn’t have a smoking gun yet.”

And Hal Levison, an astronomer at the Southwest Research Institute in Boulder, Colorado, says he isn’t sure what to make of Gomes’s finding.

“It seems surprising to me that a [solar] companion as small as Neptune could have the effect he sees,” Levison said.

But “I know Rodney, and I’m sure he did the calculations right.”

http://news.nationalgeographic.com/news/2012/05/120511-new-planet-solar-system-kuiper-belt-space-science

Exoplanets

Researchers reporte in Nature last month ten newly discovered exoplanets that appear to be very distant from their stars, or not orbiting them at all.

Read, or listen to, the NPR interview with astronomer Joachim Wambsganss and planetary scientist Sara Seager about whether such planets could support life, and how they can disocver them with swarms of miniature satellite telescopes.

http://www.npr.org/2011/05/20/136501172/exoplanets-floating-freely-without-a-star