Desert Farming Experiment Yields First Results

desert farming

A project to “green” desert areas with an innovative mix of technologies—producing food, biofuel, clean water, energy, and salt—reached a milestone this week in the Gulf state of Qatar. A pilot plant built by the Sahara Forest Project (SFP) produced 75 kilograms of vegetables per square meter in three crops annually, comparable to commercial farms in Europe, while consuming only sunlight and seawater. The heart of the SFP concept is a specially designed greenhouse. At one end, salt water is trickled over a gridlike curtain so that the prevailing wind blows the resulting cool, moist air over the plants inside. This cooling effect allowed the Qatar facility to grow three crops per year, even in the scorching summer. At the other end of the greenhouse is a network of pipes with cold seawater running through them. Some of the moisture in the air condenses on the pipes and is collected, providing a source of fresh water.

One of the surprising side effects of such a seawater greenhouse, seen during early experiments, is that cool moist air leaking out of it encourages other plants to grow spontaneously outside. The Qatar plant took advantage of that effect to grow crops around the greenhouse, including barley and salad rocket (arugula), as well as useful desert plants. The pilot plant accentuated this exterior cooling with more “evaporative hedges” that reduced air temperatures by up to 10°C. “It was surprising how little encouragement the external crops needed,” says SFP chief Joakim Hauge.

The third key element of the SFP facility is a concentrated solar power plant. This uses mirrors in the shape of a parabolic trough to heat a fluid flowing through a pipe at its focus. The heated fluid then boils water, and the steam drives a turbine to generate power. Hence, the plant has electricity to run its control systems and pumps and can use any excess to desalinate water for irrigating the plants.

The Qatar plant has also experimented with other possibilities such as culturing heat-tolerant algae, growing salt-tolerant grasses for fodder or biofuel, and evaporating the concentrated saline the plant emits to produce salt.

The Qatar plant—which is supported by Qatari fertilizer companies Yara International and Qafco—is just 1 hectare in extent with 600 square meters of growing area in the greenhouse. The fact that this small greenhouse produced such good yields, Hauge says, suggests that a commercial plant—with possibly four crops a year—could do even better. SFP researchers estimate that a facility with 60 hectares of growing area under greenhouses could provide all the cucumbers, tomatoes, peppers, and egglants now imported into Qatar. The results “reveal the potential for enabling restorative growth and value creation in arid land,” Hauge says. “I personally think that it is very important that people promote and invest in these ideas. Protected agriculture (I call it “indoor food production”) is an important option for the desert areas, particularly in the Middle East,” says Richard Tutwiler, director of the Desert Development Center at the American University in Cairo. “The big question is economic feasibility. How much did it cost to produce 75 kg of cucumbers per square meter?”

SFP is now engaged in studies aimed at building a 20-hectare test facility near Aqaba in Jordan. “This will be a considerable scaling up from the 1 hectare in Qatar,” Hauge says, and big enough to demonstrate commercial operation.

http://news.sciencemag.org/asiapacific/2013/11/desert-farming-experiment-yields-first-results

Thanks to Kebmodee for bringing this to the attention of the It’s Interesting community.

New SARS-like virus can infect both humans and animals

sn-coronavirus

 

A SARS-like virus discovered this summer in the Middle East may infect more than just humans. The pathogen, a close cousin to the one that caused the 2002 to 2003 SARS outbreak, may also be able to infect cells from pigs and a wide range of bat species, researchers report today. The findings may help public health officials track the source of the outbreak and identify the role of wild animals and livestock in spreading the virus, researchers say.

Scientists first detected the virus in a 60-year-old man from Jeddah, Saudi Arabia, who developed severe pneumonia this past spring. Unable to identify the microbe causing the illness, doctors sent samples to Erasmus MC in Rotterdam, the Netherlands. There, scientists identified the infectious agent as a coronavirus, a group known to cause many ailments, such as the common cold and a variety of gastrointestinal infections. Cases have popped up in Qatar and Jordan as well; in total, researchers have so far confirmed nine infections, including five deaths. Several other cases are suspected but haven’t been confirmed.

Researchers have fully sequenced the virus, which they dubbed hCoV-EMC (short for human coronavirus-Erasmus Medical Center). The genome revealed that it is closely related to the SARS coronavirus.

The new study, published online in mBio, is an attempt to answer other basic questions, such as where the virus originated, how it enters cells, and what other animals it might infect, says Christian Drosten, a virologist at the University of Bonn Medical Center in Germany and one of the lead authors.

Scientists knew that the SARS virus uses a receptor called ACE2 to pry open cells. Because these receptors are mainly found deep inside the human lung, patients developed very severe illness that frequently left them too sick to spread SARS to many others; the people most at risk were health care workers who take care of patients. If hCoV-EMC used the same receptor, researchers would have a head start in understanding how it spreads and how to stop it—primarily by protecting health care workers. It might also help them in the development of drugs and vaccines.

To find out, the team engineered baby hamster kidney cells to express the human ACE2 receptor. These cells could be infected with the SARS coronavirus, as expected, but not hCoV-EMC. That finding, supported by additional experiments, led them to conclude that the new coronavirus does not use ACE2 to get in. Which receptor it uses instead is still unclear, which is a “downside” of the new study, says Larry Anderson, an infectious disease specialist at Emory University in Atlanta.

Epidemiologists also want to know which species of animals it is capable of infecting to keep the new coronavirus from spreading further. To determine what types of animals hCoV-EMC can infect, Drosten and colleagues infected cells from humans, pigs, and a wide variety of bats, the key natural reservoirs of coronaviruses. The new virus could infect all of these types of cells. “It’s unusual for a coronavirus to easily go back to bats,” Drosten says. “Most coronaviruses come from bats, but once they jump to other species, you could never get them to reinfect bat cells.” The SARS virus, for instance, originated in Chinese horseshoe bats, but once it ended up in humans, it had changed so much that scientists were unable to infect bat cells with it.

“The fact that [hCoV-EMC] can infect bat cells is consistent with the hypothesis that bats might be the origin of this virus, but this finding doesn’t prove it,” Anderson says. “This virus had to come from an animal source—there’s no other explanation for what’s going on. But we still don’t know what that source is.”

Based on the findings, however, it seems likely that the new coronavirus can infect a wide range of species, Drosten says. That means public health officials may have to start looking for infections and deaths in local wild animal and livestock populations to keep the virus in check, he says.

http://news.sciencemag.org/sciencenow/2012/12/new-sars-like-virus-infects-both.html?ref=hp

Qatar Planning to Use Robot-Clouds to Keep Cool During 2022 FIFA World Cup

 

Qatar plans to implement UFO-style robot clouds which hover over stadiums to keep cool during the 2022 FIFA World Cup.

The bizarre solution is the brain-child of researchers at Qatar University who were trying to come up with a way of cooling temperatures.

Dr. Saud Ghani says the carbon fibre and solar panels would be around the size of a jumbo jet and automatically programmed to move as the sun moves in the sky

The helium gas-filled remote controlled clouds could then be used to hover over the stadium – lowering temperatures by 10 degrees.