Archive for the ‘Communication’ Category

prairie_dog_language_jpg_662x0_q100_crop-scale

You might not think it to look at them, but prairie dogs and humans actually share an important commonality — and it’s not just their complex social structures, or their habit of standing up on two feet (aww, like people). As it turns out, prairie dogs actually have one of the most sophisticated forms of vocal communication in the natural world, really not so unlike our own.

After more than 25 years of studying the calls of prairie dog in the field, one researcher managed to decode just what these animals are saying. And the results show that praire dogs aren’t only extremely effective communicators, they also pay close attention to detail.

According to Dr. Con Slobodchikoff, who turned his vocalization analysis on the Gunnison’s prairie dog of Arizona and New Mexico, the chirps these animals use as ‘alert calls’ are actually word-like packages of information to share with the rest of the colony. Amazingly, these unique sounds were found to both identify specific threats by species, such as hawks and coyotes, and to point out descriptive information about their appearance.

And, when they’re talking about humans, that might not always be flattering.

“For example, a human alarm call not only contains information about the intruder being a human, but also contains information about the size, shape (thin or fat), and color of clothes the human is wearing,” says Dr. Slobodchikoff.

“When we do an experiment where the same person walks out into a prairie dog colony wearing different colored t-shirts at different times, the prairie dogs will have alarm calls that contain the same description of the person’s size and shape, but will vary in their description of the color.”

While there’s still much to learn about how other animals use organized vocalizations to communicate, Dr. Slobodchikoff has been a pioneer in the field — discovering complex language systems in a variety of other species as well. And with that, perhaps we humans will begin to change our perspective on our place in the world, knowing now that ours is not the only voice to be heard.

http://www.treehugger.com/natural-sciences/researcher-decodes-praire-dog-language-discovers-theyve-been-calling-people-fat.html

scientists-discover-childrens-cells-living-in-mothers-brain_1

 

The link between a mother and child is profound, and new research suggests a physical connection even deeper than anyone thought. The profound psychological and physical bonds shared by the mother and her child begin during gestation when the mother is everything for the developing fetus, supplying warmth and sustenance, while her heartbeat provides a soothing constant rhythm.

The physical connection between mother and fetus is provided by the placenta, an organ, built of cells from both the mother and fetus, which serves as a conduit for the exchange of nutrients, gasses, and wastes. Cells may migrate through the placenta between the mother and the fetus, taking up residence in many organs of the body including the lung, thyroid muscle, liver, heart, kidney and skin. These may have a broad range of impacts, from tissue repair and cancer prevention to sparking immune disorders.

It is remarkable that it is so common for cells from one individual to integrate into the tissues of another distinct person. We are accustomed to thinking of ourselves as singular autonomous individuals, and these foreign cells seem to belie that notion, and suggest that most people carry remnants of other individuals. As remarkable as this may be, stunning results from a new study show that cells from other individuals are also found in the brain. In this study, male cells were found in the brains of women and had been living there, in some cases, for several decades. What impact they may have had is now only a guess, but this study revealed that these cells were less common in the brains of women who had Alzheimer’s disease, suggesting they may be related to the health of the brain.

We all consider our bodies to be our own unique being, so the notion that we may harbor cells from other people in our bodies seems strange. Even stranger is the thought that, although we certainly consider our actions and decisions as originating in the activity of our own individual brains, cells from other individuals are living and functioning in that complex structure. However, the mixing of cells from genetically distinct individuals is not at all uncommon. This condition is called chimerism after the fire-breathing Chimera from Greek mythology, a creature that was part serpent part lion and part goat. Naturally occurring chimeras are far less ominous though, and include such creatures as the slime mold and corals.

 Microchimerism is the persistent presence of a few genetically distinct cells in an organism. This was first noticed in humans many years ago when cells containing the male “Y” chromosome were found circulating in the blood of women after pregnancy. Since these cells are genetically male, they could not have been the women’s own, but most likely came from their babies during gestation.

In this new study, scientists observed that microchimeric cells are not only found circulating in the blood, they are also embedded in the brain. They examined the brains of deceased women for the presence of cells containing the male “Y” chromosome. They found such cells in more than 60 percent of the brains and in multiple brain regions. Since Alzheimer’s disease is more common in women who have had multiple pregnancies, they suspected that the number of fetal cells would be greater in women with AD compared to those who had no evidence for neurological disease. The results were precisely the opposite: there were fewer fetal-derived cells in women with Alzheimer’s. The reasons are unclear.

Microchimerism most commonly results from the exchange of cells across the placenta during pregnancy, however there is also evidence that cells may be transferred from mother to infant through nursing. In addition to exchange between mother and fetus, there may be exchange of cells between twins in utero, and there is also the possibility that cells from an older sibling residing in the mother may find their way back across the placenta to a younger sibling during the latter’s gestation. Women may have microchimeric cells both from their mother as well as from their own pregnancies, and there is even evidence for competition between cells from grandmother and infant within the mother.

What it is that fetal microchimeric cells do in the mother’s body is unclear, although there are some intriguing possibilities. For example, fetal microchimeric cells are similar to stem cells in that they are able to become a variety of different tissues and may aid in tissue repair. One research group investigating this possibility followed the activity of fetal microchimeric cells in a mother rat after the maternal heart was injured: they discovered that the fetal cells migrated to the maternal heart and differentiated into heart cells helping to repair the damage. In animal studies, microchimeric cells were found in maternal brains where they became nerve cells, suggesting they might be functionally integrated in the brain. It is possible that the same may true of such cells in the human brain.

These microchimeric cells may also influence the immune system. A fetal microchimeric cell from a pregnancy is recognized by the mother’s immune system partly as belonging to the mother, since the fetus is genetically half identical to the mother, but partly foreign, due to the father’s genetic contribution. This may “prime” the immune system to be alert for cells that are similar to the self, but with some genetic differences. Cancer cells which arise due to genetic mutations are just such cells, and there are studies which suggest that microchimeric cells may stimulate the immune system to stem the growth of tumors. Many more microchimeric cells are found in the blood of healthy women compared to those with breast cancer, for example, suggesting that microchimeric cells can somehow prevent tumor formation. In other circumstances, the immune system turns against the self, causing significant damage. Microchimerism is more common in patients suffering from Multiple Sclerosis than in their healthy siblings, suggesting chimeric cells may have a detrimental role in this disease, perhaps by setting off an autoimmune attack.

This is a burgeoning new field of inquiry with tremendous potential for novel findings as well as for practical applications. But it is also a reminder of our interconnectedness.

http://www.scientificamerican.com/article.cfm?id=scientists-discover-childrens-cells-living-in-mothers-brain

 

Science is painting a dramatic picture of how childhood neglect damages developing brains, so stunting them that neglect might be likened to physically violent abuse.

The latest addition to this research narrative comes from a study of mice placed in isolation early in their lives, an experiment that, on its surface, might seem redundant: After all, we already know that neglect is bad for humans, much less mice.

But they key to the study is in the details. The researchers found striking abnormalities in tissues that transmit electrical messages across the brain, suggesting a specific mechanism for some of the dysfunctions seen in neglected human children.

“This is very strong evidence that changes in myelin cause some of the behavioral problems caused by isolation,” said neurologist Gabriel Corfas of Harvard Medical School, a co-author of the new study, released Sept. 13 in Science.

 

Corfas and his team, led by fellow Harvard Med neuroscientist Manabu Makinodan, put 21-day-old mice in isolation for two weeks, then returned them to their colonies. When the mice reached adolescence, the researchers compared their brains and behavior to mice who hadn’t been isolated.

The isolated mice were antisocial, with striking deficits in memory. Their myelin, a cell layer that forms around neuronal networks like insulation around wires, was unusually thin, especially in the prefrontal cortex, a brain region central to cognition and personality.

Similar patterns of behavior have been seen, again and again, in children raised in orphanages or neglected by parents, as have changes to a variety of brain regions, including the prefrontal cortex. The myelin deficiencies identified by Corfas and Makinodan may underlie these defects.

 

“This is incredibly important data, because it gives us the neural mechanisms associated with the deleterious changes in the brain” that arise from neglect, said Nathan Fox, a cognitive neuroscientist at the University of Maryland.

Fox was not involved in the new study, but is part of a research group working on a long-term study of childhood neglect that is scientifically striking and poignantly tragic. Led by Harvard Medical School pediatricians Charles Nelson and Margaret Sheridan, the project has tracked for the last 12 years children who started their lives in an orphanage in Bucharest, Romania, a country infamous for the spartan, impersonal conditions of its orphanages.

Among children who spent their first two years in the orphanage, the researchers observed high levels developmental problems, cognitive deficits, mental illness, and significant reductions in brain size. When the researchers measured the sheer amount of electrical activity generated by the brains of children who’d been isolated as toddlers, “it was like you’d had a rheostat, a dimmer, and dimmed down the amount of energy in these institutionalized children,” said Fox.

These problems persisted even when toddlers were later adopted, suggesting a crucial importance for those early years in setting a life’s neurological trajectory. “There’s a sensitive period for which, if a child is taken out of an institution, the effects appear to be remediated, and after which remediation is very, very difficult,” Fox said. The same pattern was observed in Corfas and Makinodan’s mice.

One phenomenon not studied in the mice, but regularly found in people neglected as children, are problems with stress: mood disorders, anxiety, and general dysfunction in a body’s stress responses.

Those mechanisms have been studied in another animal, the rhesus monkey. While deprivation studies on non-human primates — and in particular chimpanzees — are controversial, the results from the monkey studies have been instructive.

Early-life isolation sets off a flood of hormones that permanently warp their responses to stress, leaving them anxious and prone to violent swings in mood.

Isolation is so damaging because humans, especially as infants, literally depend on social stimulation to shape their minds, said psychologist John Cacioppo of the University of Chicago.

“Human social processes were once thought to have been incidental to learning and cognition,” Cacioppo wrote in an e-mail. “However, we now think that the complexities and demands of social species have contributed to the evolution of the brain and nervous system and to various aspects of cognition.”

Corfas and Makinodan’s team linked specific genetic changes to the abnormalities in their mice, and hope they might someday inform the development of drugs that can help reverse isolation’s effects.

A more immediate implication of the research is social. As evidence of neglect’s severe, long-term consequences accumulates, it could shape the way people think not just of orphanages, but policy matters like maternity and paternity leave, or the work requirements of single parents on welfare.

“What this work certainly says is that the first years of life are crucially important for brain architecture,” Fox said. “Infants and young children have to grow up in an environment of social relationships, and experiencing those is critical for healthy cognitive, social and psychological development. As a society, we should be figuring out how to encourage all that to happen.”

Thanks to Kebmobee for bringing this to the attention of the It’s Interesting community.

http://www.wired.com/wiredscience/2012/09/neuroscience-of-neglect/

Computer applications can drive cars, fly planes, play chess and even make music.

But can an app tell a story?

Chicago-based company Narrative Science has set out to prove that computers can tell stories good enough for a fickle human audience. It has created a program that takes raw data and turns it into a story, a system that’s worked well enough for the company to earn its own byline on Forbes.com.

Kristian Hammond, Narrative Science’s chief technology officer, said his team started the program by taking baseball box scores and turning them into game summaries.

“We did college baseball,” Hammond recalled. “And we built out a system that would take box scores and historical information, and we would write a game recap after a game. And we really liked it.”

Narrative Science then began branching out into finance and other topics that are driven heavily by data. Soon, Hammond says, large companies came looking for help sorting huge amounts of data themselves.

“I think the place where this technology is absolutely essential is the area that’s loosely referred to as big data,” Hammond said. “So almost every company in the world has decided at one point that in order to do a really good job, they need to meter and monitor everything.”

Narrative Science hasn’t disclosed how much money is being made or whether a profit is being turned with the app. The firm employs about 30 people. At least one other company, based in North Carolina, is working on similar technology.

Meanwhile, Hammond says Narrative Science is looking to eventually expand into long form news stories.

That’s an idea that’s unsettling to some journalism experts.

Kevin Smith, head of the Society of Professional Journalists Ethics Committee, says he laughed when he heard about the program.

“I can remember sitting there doing high school football games on a Friday night and using three-paragraph formulas,” Smith said. “So it made me laugh, thinking they have made a computer that can do that work.”

Smith says that, ultimately, it’s going to be hard for people to share the uniquely human custom of story telling with a machine.

“I can’t imagine that a machine is going to tell a story and present it in a way that other human beings are going to accept it,” he said. “At least not at this time. I don’t see that happening. And the fact that we’re even attempting to do it — we shouldn’t be doing it.”

Other experts are not as concerned. Greg Bowers, who teaches at the Missouri School of Journalism, says computers don’t have the same capacity for pitch, emotion and story structure.

“I’m not alarmed about it as some people are,” Bowers said. “If you’re writing briefs that can be easily replicated by a computer, then you’re not trying hard enough.”

http://www.cnn.com/2012/05/11/tech/innovation/computer-assisted-writing/index.html?hpt=hp_c2

Japanese scientists at Osaka University have created a robot hand so people can shake hands with someone remotely. The robot hand communicates grip force, body temperature and touch. The creators are considering building telepresence robots with the robot hand so they can shake hands with people.
The creators of the robot hand say, “People have the preconceived notion that a robot hand will feel cold, so we give it a temperature slightly higher than skin temperature.”

http://www.sciencespacerobots.com/blog/32820121

Thanks to Kebmodee for bringing this to the attention of the It’s Interesting community.

Dan the baboon sits in front of a computer screen. The letters BRRU pop up.  With a quick and almost dismissive tap, the monkey signals it’s not a word. Correct. Next comes, ITCS. Again, not a word. Finally KITE comes up.

He pauses and hits a green oval to show it’s a word. In the space of just a few seconds, Dan has demonstrated a mastery of what some experts say is a form of pre-reading and walks away rewarded with a treat of dried wheat.

Dan is part of new research that shows baboons are able to pick up the first step in reading – identifying recurring patterns and determining which four-letter combinations are words and which are just gobbledygook.

The study shows that reading’s early steps are far more instinctive than scientists first thought and it also indicates that non-human primates may be smarter than we give them credit for.

“They’ve got the hang of this thing,” said Jonathan Grainger, a French scientist and lead author of the research.

Baboons and other monkeys are good pattern finders and what they are doing may be what we first do in recognizing words.

It’s still a far cry from real reading. They don’t understand what these words mean, and are just breaking them down into parts, said Grainger, a cognitive psychologist at the Aix-Marseille University in France.

In 300,000 tests, the six baboons distinguished between real and fake words about three-out-of-four times, according to the study published in Thursday’s journal Science.

The 4-year-old Dan, the star of the bunch and about the equivalent age of a human teenager, got 80 percent of the words right and learned 308 four-letter words.

The baboons are rewarded with food when they press the right spot on the screen: A blue plus sign for bogus combos or a green oval for real words.

Even though the experiments were done in France, the researchers used English words because it is the language of science, Grainger said.

The key is that these animals not only learned by trial and error which letter combinations were correct, but they also noticed which letters tend to go together to form real words, such as SH but not FX, said Grainger. So even when new words were sprung on them, they did a better job at figuring out which were real.

Grainger said a pre-existing capacity in the brain may allow them to recognize patterns and objects, and perhaps that’s how we humans also first learn to read.

The study’s results were called “extraordinarily exciting” by another language researcher, psychology professor Stanislas Dehaene at the College of France, who wasn’t part of this study. He said Grainger’s finding makes sense. Dehaene’s earlier work says a distinct part of the brain visually recognizes the forms of words. The new work indicates this is also likely in a non-human primate.

This new study also tells us a lot about our distant primate relatives.

“They have shown repeatedly amazing cognitive abilities,” said study co-author Joel Fagot, a researcher at the French National Center for Scientific Research.

Bill Hopkins, a professor of psychology at the Yerkes Primate Center in Atlanta, isn’t surprised.

“We tend to underestimate what their capacities are,” said Hopkins, who wasn’t part of the French research team. “Non-human primates are really specialized in the visual domain and this is an example of that.”

This raises interesting questions about how the complex primate mind works without language or what we think of as language, Hopkins said. While we use language to solve problems in our heads, such as deciphering words, it seems that baboons use a “remarkably sophisticated” method to attack problems without language, he said.

Key to the success of the experiment was a change in the testing technique, the researchers said. The baboons weren’t put in the computer stations and forced to take the test. Instead, they could choose when they wanted to work, going to one of the 10 computer booths at any time, even in the middle of the night.

The most ambitious baboons test 3,000 times a day; the laziest only 400.

The advantage of this type of experiment setup, which can be considered more humane, is that researchers get far more trials in a shorter time period, he said.

“They come because they want to,” Fagot said. “What do they want? They want some food. They want to solve some task.”