Posts Tagged ‘stress’

by Lisa Rapaport

Kids who have more supportive experiences with family, friends, and people in their school and community may be less likely to have psychological or relationship troubles in adulthood, a new study suggests.

Adverse childhood experiences (ACEs) like abuse, neglect, violence, and parental absence have long been linked to lasting negative effects on physical and mental health, researchers note in JAMA Pediatrics. But less is known about whether positive experiences make it easier for kids to cope, or what happens with children whose lives have mix of negative and positive experiences

For the current study, researchers surveyed 6,118 adults about how often in childhood they felt able to talk to family and friends about feelings; felt their family stood by them during difficult times; enjoyed participating in community traditions; felt a sense of belonging in high school; felt supported by friends; had at least two nonparent adults who took an interest in them; and felt safe and protected by an adult in their home.

Overall, adults who reported six to seven of these positive childhood experiences were 72% less likely to have depression or at least 14 poor mental health days each month than adults who reported no more than two positive childhood experiences. Even three to five positive experiences were tied to a 50% lower likelihood of depression or poor mental health than two or fewer.

These associations held true even when respondents reported multiple adverse childhood experiences.

“The absence of the types of positive childhood experiences we assessed in our study is very stressful for a child,” said lead study author Christina Bethell of the Bloomberg School of Public Health at Johns Hopkins University in Baltimore.

“Without positive nurturance, children’s stress hormones can get stuck on high and this impacts how their brain develops in ways that can make it hard for them to experience safety, relaxation and to become open, curious and learn to have positive relationships with others,” Bethell said by email.

The association between positive life experiences and better adult mental health and relationships persisted even among people who experienced ACEs during childhood.

Compared to participants who reported no more than two positive childhood experiences, people who experienced six to seven positive childhood experiences were also more than three times more likely to report that as adults, they “always” got the social and emotional support they needed.

When people had no more than two positive childhood experiences, only about one-third reported always getting the social and emotional support they needed – even when they didn’t have a history of ACEs.

The study doesn’t prove that positive childhood experiences impact adult mental health or relationships.

“In fact, people with poor mental health might be less likely to view their childhood experiences as positive,” said Dr. Rebecca Dudovitz, a researcher at the David Geffen School of Medicine at the University of California Los Angeles.

“It might actually be that adults with depression remember their childhood differently than adults without depression,” Dudovitz, who wasn’t involved in the study, said by email.

Parents may not be able to prevent adverse childhood experiences, but they can help kids become resilient, said Dr. Angelica Robles, a developmental-behavioral pediatrician at Novant Health in Charlotte, North Carolina, who wasn’t involved in the study.

“Parents can accomplish this by simply talking about feelings with their children, standing by their children during difficult times, and showing interest in their daily lives,” Robles said by email. “The child will then feel safe, and it is in this sense of security in the face of stress that the child learns to flourish.”

https://www.reuters.com/article/us-health-childhood/positive-childhood-experiences-tied-to-better-adult-mental-health-idUSKCN1VU2CP

Advertisements

by Carly Cassella

Sticks and stones may break your bones, but name-calling could actually change the structure of your brain.

A new study has found that persistent bullying in high school is not just psychologically traumatising, it could also cause real and lasting damage to the developing brain.

The findings are drawn from a long-term study on teenage brain development and mental health, which collected brain scans and mental health questionnaires from European teenagers between the ages of 14 and 19.

Following 682 young people in England, Ireland, France and Germany, the researchers tallied 36 in total who reported experiencing chronic bullying during these years.

When the researchers compared the bullied participants to those who had experienced less intense bullying, they noticed that their brains looked different.

Across the length of the study, in certain regions, the brains of the bullied participants appeared to have actually shrunk in size.

In particular, the pattern of shrinking was observed in two parts of the brain called the putamen and the caudate, a change oddly reminiscent of adults who have experienced early life stress, such as childhood maltreatment.

Sure enough, the researchers found that they could partly explain these changes using the relationship between extreme bullying and higher levels of general anxiety at age 19. And this was true even when controlling for other types of stress and co-morbid depressive symptoms.

The connection is further supported by previous functional MRI studies that found differences in the connectivity and activation of the caudate and putamen activation in those with anxiety.

“Although not classically considered relevant to anxiety, the importance of structural changes in the putamen and caudate to the development of anxiety most likely lies in their contribution to related behaviours such as reward sensitivity, motivation, conditioning, attention, and emotional processing,” explains lead author Erin Burke Quinlan from King’s College London.

In other words, the authors think all of this shrinking could be a mark of mental illness, or at least help explain why these 19-year-olds are experiencing such unusually high anxiety.

But while numerous past studies have already linked childhood and adolescent bullying to mental illness, this is the very first study to show that unrelenting victimisation could impact a teenager’s mental health by actually reshaping their brain.

The results are cause for worry. During adolescence, a young person’s brain is absolutely exploding with growth, expanding at an incredible place.

And even though it’s normal for the brain to prune back some of this overabundance, in the brains of those who experienced chronic bullying, the whole pruning process appears to have spiralled out of control.

The teenage years are an extremely important and formative period in a person’s life, and these sorts of significant changes do not bode well. The authors suspect that as these children age, they might even begin to experience greater shrinkage in the brain.

But an even longer long-term study will need to be done if we want to verify that hunch. In the meantime, the authors are recommending that every effort be made to limit bullying before it can cause damage to a teenager’s brain and their mental health.

This study has been published in Molecular Psychiatry.

https://www.sciencealert.com/chronic-bullying-could-actually-reshape-the-brains-of-teens

By Rachael Rettner

Many people tend to look back on the past with rose-colored glasses, remembering the good times and the good feelings…while forgetting the bad.

But a new study suggests that heavy marijuana users may have some trouble letting go of negative emotions tied to memories — a phenomenon that’s also seen in people with depression. Earlier research has also linked marijuana use with depression.

Although the new results are very preliminary, the findings, presented here on Friday (May 25) at the annual meeting of the Association for Psychological Science, may offer clues about the link between marijuana use and depression.

Rose-colored memories

The study explored a psychological phenomenon called “fading affect bias,” in which people tend to hold on to positive feelings tied to their memories more than they hold on to negative feelings. In other words, negative feelings related to our memories fade faster than positive ones.

Psychologists have hypothesized that this phenomenon, which is generally seen in people without mental health conditions, may serve as a sort of “psychological immune system,” said study lead author Daniel Pillersdorf, a graduate student in psychology at the University of Windsor in Ontario. This may be “so that we think more pleasantly in general, and don’t have that cognitive burden of holding on to negative emotions associated with memories,” Pillersdorf said.

Some previous studies have suggested that this fading affect bias may be different for people who use drugs, but no studies have looked at whether marijuana use could affect this phenomenon.

In the new study, the researchers analyzed information from 46 heavy marijuana users — most of whom used the drug at least four times a week — and 51 people who didn’t use marijuana. Participants were asked to recall, and provide written descriptions of, three pleasant memories and three unpleasant memories from the past year. The participants were then asked to rate the intensity of emotion tied to those memories, on a scale of negative 10, meaning extremely unpleasant, to positive 10, or extremely pleasant. They rated their emotions both at the time the memory was made, and at the current time. (Marijuana users were not under the influence at the time the researchers asked them the questions.)

The researchers found that both marijuana users and non-users showed fading affect bias, but for marijuana users, the fading was a lot less.

“They were hanging on to that unpleasant affect over time, much more” than non-users, Pillersdorf told Live Science. “They were less able … to shed that unpleasantness associated with their memories.”

The study also found that marijuana users tended to recall life events in more general terms than specific ones. For example, when asked about a happy event in the past year, marijuana users were more likely to respond with general or broad answers such as “I went on vacation,” rather than recalling a specific event or day, such as “I attended my college graduation.” This phenomenon is known as over-general autobiographical memory, and it’s also linked with depression, Pillersdorf said.

It’s important to note that the new study found only an association and cannot determine why marijuana users show less fading affect bias, and more overgeneral memory, than non-users.

Link with depression?

Even so, the new findings agree with previous research that has found a link between heavy marijuana use and depression. However, researchers don’t know why marijuana and depression are linked — it could be that marijuana use plays a role in developing depression, or that people who are already depressed are more likely to use the drug. [7 Ways Marijuana May Affect the Brain]

Based on the new findings, one hypothesis is that the decreased “fading” of negative memories in marijuana users could be contributing to the development or continuing of depression, Pillersdorf said. “It may be that, chronic or frequent cannabis use is putting [a person] more at risk for the development or continuing of depression,” he said. However, Pillersdorf stressed that this is just a hypothesis that would need to be investigated with future research.

To further investigate the link, researchers will need to study marijuana users and non-users over long periods of time. For example, researchers could start with people in their late teens or early 20s, who don’t have depression, and see if those who use marijuana frequently are more likely to eventually develop depression than non-users.

Additional studies could also investigate whether other substances have an effect on fading affect bias, Pillersdorf said.

The study has not yet been published in a peer-reviewed journal.

https://www.livescience.com/62679-marijuana-negative-memories.html?utm_source=notification

Exposure to early life trauma can lead to poor physical and mental health in some individuals, which can be passed on to their children. Studies in mice show that at least some of the effects of stress can be transmitted to offspring via environmentally-induced changes in sperm miRNA levels.

A new epigenetics study raises the possibility that the same is true in humans. It shows for the first time that the levels of the same two sperm miRNAs change in both men and mice exposed to early life stress. In mice, the negative effects of stress are transmitted to offspring. The study is published On May 23rd in Translational Psychiatry.

“The study raises the possibility that some of the vulnerability of children is due to Lamarckian type inheritance derived from their parents’ experiences,” said Larry Feig, Ph.D., professor of Developmental, Molecular and Chemical Biology at Tufts University School of Medicine and member of the Cell, Molecular and Developmental Biology and Neuroscience programs at the Sackler School of Graduate Biomedical Sciences at Tufts.

The human part of the study utilized the Adverse Childhood Experiences (ACE) questionnaire as an indicator of men’s early life trauma. The ACE Study questionnaire includes 10 yes or no questions about one’s experiences until the age of 18, including physical, verbal, or sexual abuse, and physical or emotional neglect. Other questions relate to one’s family members. Four or more yes answers put one at significantly increased risk for future mental and physical health problems. According to a ChildTrends research brief published in 2014, a remarkably high percentage (~10 percent) of the population report scores at or above this cutoff.

miRNAs constitute a newly appreciated type of gene regulator, where each miRNA controls a distinct set of genes. Until recently, sperm from fathers were thought to contribute only DNA to the mother’s egg upon fertilization, but new data in mice indicate that sperm also contribute miRNAs that influence the next generation. Sperm miRNA expression in humans is known to be affected by environmental factors, such as smoking and obesity, but no human study to date has documented the effects of stress.

The new study found that among 28 Caucasian male volunteers, the expression of two highly related sperm miRNAs, miR-449 and miR-34, were inversely proportional to the men’s ACE scores. Men with the most extensive early abuse (highest ACE scores) had as much as a 300-fold reduction in the two sperm miRNAs compared to men with the least abuse.

The idea that these changes can affect the next generation is supported by additional findings in the study, e.g.:

the same sperm miRNA changes that take place in men with high ACE scores also occur in mice exposed to early life social instability stress, which Feig’s lab has shown previously leads to anxiety and sociability defects in female offspring of stressed males for at least three generations;
these two sets of miRNAs are known to work together in mice to allow proper development of the brain and sperm;
in humans, miR-34c has been implicated in promoting early embryo development;
the mouse studies showed that the decline in these sperm miRNA levels is transmitted to the next generation; and
when these embryos mature, these miRNAs are also reduced in the sperm of their male offspring who pass on stress behaviors to their female offspring.
“This is the first study to show that stress is associated with altered levels of sperm miRNAs in humans. We are currently setting up a new, larger study in men, and additional experiments in mice that could yield further support for the idea that changes in these sperm miRNAs do, in fact, contribute to an elevation of stress-related disorders across generations,” said David Dickson, an M.D./Ph.D. student at Tufts and first author of the study.

“Looking to the future, we may be able to figure out a way to restore the low miRNA levels found in men exposed to extreme trauma, because epigenetic changes, such as stress-induced decreases in sperm miRNA expression, are reversible, unlike genetic changes that alter the DNA sequence,” Dickson added.

For example, obesity has been shown to alter specific sperm miRNA levels in men, while bariatric surgery and subsequent weight loss can reverse the changes. In addition, Isabelle Mansuy’s lab has reversed some of the negative effects of stress in mice across generations by exposing mice to an “enriched environment” that involves extensive social interactions, exercise and opportunities to explore their surroundings.

Feig pointed out that in addition to focusing on the potential transgenerational effects of stress, there is a growing appreciation that physicians should collect information on childhood trauma for the sake of the patients who are experiencing this early trauma.

This is because “childhood abuse, trauma and dysfunction adds to the risk of future physical and psychiatric maladies, and significant exposure to abusive and/or dysfunctional families is remarkably common. Moreover, sensitivity to PTSD has been shown to correlate with ACE score, implying the ACE questionnaire could be used as a screening tool to identify people who should take extra precaution to avoid potentially traumatic experiences,” he said.

“However, some people may not answer the ACE survey accurately due to inaccurate recall or because of the sensitive nature of many of the questions, particularly in settings that do not allow anonymity and/or where their answers could affect their future. Thus, discovery of unbiased markers for early trauma, like specific sperm miRNA content, could complement ACE surveys in some clinical settings to bolster preventative medicine,” he concluded.

The authors note that the relatively small sample size limits their ability to more deeply explore the association between ACE scores and miRNA expression. In addition, a longitudinal study with information on behavioral and psychological factors throughout adulthood, with repeated measurements of sperm miRNA content, could allow for further exploration on the effect of cumulative exposure to childhood trauma on miRNA.

Additional authors are Jessica Paulus, Sc.D., Tufts Medical Center as well as Tufts University School of Medicine and the Sackler School; Virginia Mensah, M.D., formerly in Feig’s lab with Women & Infants Hospital and the Warren Alpert Medical School at Brown University and now with the Reproductive Science Center of New Jersey; Janis Lem, Ph.D., Tufts Medical Center; Lorena Saavedra-Rodriguez, Ph.D., formerly a postdoctoral fellow in Feig’s laboratory at Tufts and now with a biopharmaceutical company; and Adrienne Gentry, D.O. and Kelly Pagidas, M.D., University of Louisville School of Medicine.

This study was supported by awards from the National Institute of Mental Health of the National Institutes of Health (R01MH107536), as well as the Tufts Center for Neuroscience Research (National Institute of Neurological Disorders and Stroke of the NIH, P30NS047243). The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health or other funders.

Dickson, D.A., Paulus, J.K., Mensah, V., Lem, J., Saavedra-Rodriguez, L., Gentry, A., Pagidas, K., and Feig, L. A. (2018). Reduced levels of miRNAs 449 and 34 in sperm of mice and men exposed to early life stress. Translational Psychiatry. https://doi.org/10.1038/s41398-018-0146-2

https://now.tufts.edu/news-releases/early-life-trauma-men-associated-reduced-levels-sperm-micrornas


Pinpoint stimulation of a cluster of nerve cells in the brains of mice encouraged timid responses to a perceived threat, whereas stimulation of an adjacent cluster induced boldness and courage.

Researchers at the Stanford University School of Medicine have identified two adjacent clusters of nerve cells in the brains of mice whose activity level upon sighting a visual threat spells the difference between a timid response and a bold or even fierce one.

Located smack-dab in the middle of the brain, these clusters, or nuclei, each send signals to a different area of the brain, igniting opposite behaviors in the face of a visual threat. By selectively altering the activation levels of the two nuclei, the investigators could dispose the mice to freeze or duck into a hiding space, or to aggressively stand their ground, when approached by a simulated predator.

People’s brains probably possess equivalent circuitry, said Andrew Huberman, PhD, associate professor of neurobiology and of ophthalmology. So, finding ways to noninvasively shift the balance between the signaling strengths of the two nuclei in advance of, or in the midst of, situations that people perceive as threatening may help people with excessive anxiety, phobias or post-traumatic stress disorder lead more normal lives.

“This opens the door to future work on how to shift us from paralysis and fear to being able to confront challenges in ways that make our lives better,” said Huberman, the senior author of a paper describing the experimental results. It was published online May 2 in Nature. Graduate student Lindsey Salay is the lead author.

Perilous life of a mouse
There are plenty of real threats in a mouse’s world, and the rodents have evolved to deal with those threats as best they can. For example, they’re innately afraid of aerial predators, such as a hawk or owl swooping down on them. When a mouse in an open field perceives a raptor overhead, it must make a split-second decision to either freeze, making it harder for the predator to detect; duck into a shelter, if one is available; or to run for its life.

To learn how brain activity changes in the face of such a visual threat, Salay simulated a looming predator’s approach using a scenario devised some years ago by neurobiologist Melis Yilmaz Balban, PhD, now a postdoctoral scholar in Huberman’s lab. It involves a chamber about the size of a 20-gallon fish tank, with a video screen covering most of its ceiling. This overhead screen can display an expanding black disc simulating a bird-of-prey’s aerial approach.

Looking for brain regions that were more active in mice exposed to this “looming predator” than in unexposed mice, Salay pinpointed a structure called the ventral midline thalamus, or vMT.

Salay mapped the inputs and outputs of the vMT and found that it receives sensory signals and inputs from regions of the brain that register internal brain states, such as arousal levels. But in contrast to the broad inputs the vMT receives, its output destination points were remarkably selective. The scientists traced these outputs to two main destinations: the basolateral amygdala and the medial prefrontal cortex. Previous work has tied the amygdala to the processing of threat detection and fear, and the medial prefrontal cortex is associated with high-level executive functions and anxiety.

Further inquiry revealed that the nerve tract leading to the basolateral amygdala emanates from a nerve-cell cluster in the vMT called the xiphoid nucleus. The tract that leads to the medial prefrontal cortex, the investigators learned, comes from a cluster called the nucleus reuniens, which snugly envelopes the xiphoid nucleus.

Next, the investigators selectively modified specific sets of nerve cells in mice’s brains so they could stimulate or inhibit signaling in these two nerve tracts. Exclusively stimulating xiphoid activity markedly increased mice’s propensity to freeze in place in the presence of a perceived aerial predator. Exclusively boosting activity in the tract running from the nucleus reuniens to the medial prefrontal cortex in mice exposed to the looming-predator stimulus radically increased a response seldom seen under similar conditions in the wild or in previous open-field experiments: The mice stood their ground, right out in the open, and rattled their tails, an action ordinarily associated with aggression in the species.

Thumping tails

This “courageous” behavior was unmistakable, and loud, Huberman said. “You could hear their tails thumping against the side of the chamber. It’s the mouse equivalent of slapping and beating your chest and saying, ‘OK, let’s fight!’” The mice in which the nucleus reuniens was stimulated also ran around more in the chamber’s open area, as opposed to simply running toward hiding places. But it wasn’t because nucleus reuniens stimulation put ants in their pants; in the absence of a simulated looming predator, the same mice just chilled out.

In another experiment, the researchers showed that stimulating mice’s nucleus reuniens for 30 seconds before displaying the “looming predator” induced the same increase in tail rattling and running around in the unprotected part of the chamber as did vMT stimulation executed concurrently with the display. This suggests, Huberman said, that stimulating nerve cells leading from the nucleus reunions to the prefrontal cortex induces a shift in the brain’s internal state, predisposing mice to act more boldly.

Another experiment pinpointed the likely nature of that internal-state shift: arousal of the autonomic nervous system, which kick-starts the fight, flight or freeze response. Stimulating either the vMT as a whole or just the nucleus reuniens increased the mice’s pupil diameter — a good proxy of autonomic arousal.

On repeated exposures to the looming-predator mockup, the mice became habituated. Their spontaneous vMT firing diminished, as did their behavioral responses. This correlates with lowered autonomic arousal levels.

Human brains harbor a structure equivalent to the vMT, Huberman said. He speculated that in people with phobias, constant anxiety or PTSD, malfunctioning circuitry or traumatic episodes may prevent vMT signaling from dropping off with repeated exposure to a stress-inducing situation. In other experiments, his group is now exploring the efficacy of techniques, such as deep breathing and relaxation of visual fixation, in adjusting the arousal states of people suffering from these problems. The thinking is that reducing vMT signaling in such individuals, or altering the balance of signaling strength from their human equivalents of the xiphoid nucleus and nucleus reuniens may increase their flexibility in coping with stress.

Reference:
Salay, L. D., Ishiko, N., & Huberman, A. D. (2018). A midline thalamic circuit determines reactions to visual threat. Nature. doi:10.1038/s41586-018-0078-2

http://med.stanford.edu/news/all-news/2018/05/scientists-find-fear-courage-switches-in-brain.html

By Jacqueline Howard

Whether you call them gray hairs or stress highlights, world-renowned animal scientist and autism advocate Temple Grandin wants you to know that dogs may get them prematurely, too — possibly when stressed, such as being left at home alone.

Premature graying in dogs may be an indicator of anxiety and impulsivity, according to a study published in this month’s edition of the journal Applied Animal Behaviour Science, in which Grandin served as a co-author.

Camille King, an animal behaviorist and owner of the Canine Education Center in Denver, noticed a few years ago that many impulsive and anxious dogs seemed to be prematurely turning gray. When King told Grandin about her observations, Grandin said she encouraged King to lead the research.

“The first thing I thought of when she told me that were the presidents, and how they age and get prematurely gray,” said Grandin, professor of animal science at Colorado State University, referring to American commanders in chief.

“The fact that presidents turn prematurely gray was one of the things that made me encourage her to do the study,” Grandin said. “Basically, (the study findings) validated what she had seen in years of doing dog behavior work.”

The study, conducted at Northern Illinois University, involved 400 dogs, 4 years old or younger, with non-white-colored hair so the researchers could adequately determine degrees of graying.

“Normally, dogs wouldn’t be gray at age 4,” Grandin said.

The study, conducted at Northern Illinois University, involved 400 dogs, 4 years old or younger, with non-white-colored hair so the researchers could adequately determine degrees of graying.

“Normally, dogs wouldn’t be gray at age 4,” Grandin said.

Next, the researchers compared the survey responses with how much gray hair appeared on the dogs’ muzzles in their photos.
Grandin helped the researchers build a scoring system to measure the degrees of grayness: A score of 0 is “no gray;” 1 is for gray on the front of the nose only; 2 is for gray hair halfway up the muzzle; and 3 is “full gray.”

It turned out that a high grayness score was significantly and positively predicted by survey responses that indicated both high anxiety and impulsivity.

“Essentially, the results indicate that for each standard deviation increase in the measured trait, either anxiety or impulsiveness, the odds of being in a higher rating category of muzzle grayness increase 40% to 65%,” said Thomas Smith, a professor at Northern Illinois University’s Department of Educational Technology, Research and Assessment, who was a co-author of the study.

Smith added that he was initially skeptical that a dog’s premature muzzle grayness might be linked to anxiety and impulsiveness.

“However, when we analyzed the data, the results actually were striking,” he said. “I was surprised.”
A similar association between stress and premature graying possibly could be found in other mammals, outside of humans and dogs, but more research is needed, Grandin said.

The new study appears to extend what has been previously seen in people — the relationship between stress and gray hair — to dogs, said Matt Kaeberlein, a professor and co-director of the University of Washington’s Dog Aging Project, who was not involved in the new study.

“There are a few things about this study that I really like. One is that it nicely illustrates another way in which dogs and humans are similar, specifically in this case, the way we interact with our environment to experience stress. I like the innovative approach of applying facial image recognition to dogs,” Kaeberlein said.

“I do think it’s important to keep in mind that while hair graying is a useful ‘biomarker’ of aging and experienced stress, it is not particularly precise. We should avoid interpreting causation from correlation,” he said about the study. “Many dogs and people get gray hair for reasons unrelated to their perception of stress or anxiety, so while anxiety (or) stress appears to cause hair graying, gray hair is not necessarily caused by anxiety or stress. In other words, just because your dog gets gray hair doesn’t mean she or he is stressed out.”

For instance, more research is needed to determine how much genetics might play a role not only in premature graying in young dogs but also how a dog might respond to stress, Grandin said. She added that additional research could also determine how much of the study results were influenced by anxiety and impulsivity, respectively.

“There’s probably some genetic influence where some dogs that are impulsive and anxious don’t turn gray. You see, that would be your genetic interaction, but when you take a big population of dogs, it statistically comes out that anxious and impulsive dogs are more likely to start turning gray before age 4,” Grandin said.

“Genetic factors are important, but genetic factors also can be modified by experience, so you can’t just say an animal’s hard-wired genetics, it’s not. It’s both. Both genetics and the environment are important,” she said.

http://www.cnn.com/2016/12/23/health/stress-dogs-gray-hair/index.html

By Patrick Foster

Lawyers, teachers and doctors have a better chance of fighting off the effects of Alzheimer’s disease, because of the complex nature of their jobs, scientists reported this week.

Researchers found that people whose jobs combined complex thinking with social engagement with others – such as social workers and engineers – were better protected against the onset of Alzheimer’s, compared to those in manual work.

The study came as another report suggested that people with a poor diet could protect themselves against cognitive decline by adopting a mentally stimulating lifestyle.

Both pieces of research, published at the international conference of the Alzheimer’s Association, in Toronto, examined the impact of complex thinking on the onset of the disease.

In the first study, carried out by scientists at the Alzheimer’s Disease Research Centre, in Wisconsin, researchers examined white matter hyperintensities (WMHs) – white spots that appear on brain scans and are associated with Alzheimer’s – in 284 late-middle-aged patients considered at risk of contracting the disease.

They found that people who worked primarily with other people, as opposed to with “things or data”, were less likely to be affected by brain damage indicated by WMHs.

While lawyers, social workers, teachers and doctors were best protected, those who enjoyed the least protection included shelf-stackers, machine operators and labourers.

Elizabeth Boots, a researcher on the project, said: “These findings indicate that participants with higher occupational complexity are able to withstand pathology associated with Alzheimer’s and cerebrovascular disease and perform at a similar cognitive level as their peers.

“This association is primarily driven by work with people, rather than data or things. These analyses underscore the importance of social engagement in the work setting for building resilience to Alzheimer’s disease.”

The second study, carried out by Baycrest Health Sciences, in Toronto, examined the diet of 351 older adults.

Researchers found that those who had a traditional Western diet of red and processed meat, white bread, potatoes and sweets were more likely to experience cognitive decline.

However, those who adhered to such a diet but who had a mentally stimulating lifestyle enjoyed some protection from such decline.

Dr Matthew Parrott, one member of the team, said: “Our results show the role higher educational attainment, mentally stimulating work and social engagement can play in protecting your brain from cognitive decline, counteracting some negative effects of an unhealthy diet.

“This adds to the growing body of evidence showing how various lifestyle factors may combine to increase or protect against vulnerability to Alzheimer’s disease.”

Other research put forward at the convention included a study showing that digital brain training exercises can help stave of Alzheimer’s, and another paper that suggested that some newly-identified genes may also increase resilience to the disease.

Maria C. Carrillo, the chief science officer at the Alzheimer’s Association, said: “These new data add to a growing body of research that suggests more stimulating lifestyles, including more complex work environments with other people, are associated with better cognitive outcomes in later life.

“As each new study emerges, we further understand just how powerful cognitive reserve can be in protecting the brain from disease. Formal education and complex occupation could potentially do more than just slow cognitive decline – they may actually help compensate for the cognitive damage done by bad diet and small vessel disease in the brain.

“It is becoming increasingly clear that in addition to searching for pharmacological treatments, we need to address lifestyle factors to better treat and ultimately prevent Alzheimer’s and other dementias.”

http://www.telegraph.co.uk/news/2016/07/24/stressful-job-it-might-help-you-fight-off-alzheimers/