Posts Tagged ‘space’

For about a century now, scientists have theorized that the metals in our Universe are the result of stellar nucleosynthesis. This theory states that after the first stars formed, heat and pressure in their interiors led to the creation of heavier elements like silicon and iron. These elements not only enriched future generations of stars (“metallicity”), but also provided the material from which the planets formed.

More recent work has suggested that some of the heaviest elements could actually be the result of binary stars merging. In fact, a recent study by two astrophysicists found that a collision which took place between two neutron stars billions of years ago produced a considerable amount of some of Earth’s heaviest elements. These include gold, platinum and uranium, which then became part of the material from which Earth formed.

The research was conducted by Prof. Szabolcs Márka from Columbia University and Prof. Imre Bartos of the University of Florida. Their findings were published in a study titled “Nearby Neutron-Star Mergers Explain Actinide Abundance in the Early Solar System”, which recently appeared in the May issue of the scientific journal Nature.


An artist’s conception of two neutron stars, moments before they collide. Credit: NASA

According to the scientific consensus, asteroids and comets are composed of material left over from the formation of the Solar System. When bits of these come to Earth in the form of meteorites, they carry traces of radioactive isotopes whose decay is used to determine when the asteroids were created. The study of these space rocks can also shed light on what materials existed in our Solar System billions of years ago.

For the sake of their study, Bartos and Márka ran numerical simulations of the Milky Way and compared the results to the composition of meteorites that were retrieved on Earth. What they found was that a single neutron-star collision could have occurred within our cosmic neighborhood – ~1,000 light years from our Solar System – roughly 4.65 billion years ago.

At the time, our Solar System was still a massive cloud of dust and gas that would soon undergo gravitational collapse at its center, thus giving birth to our Sun. Roughly 100 million years later, the Earth and other Solar Planets would form from the proto-planetary debris disk that fell into orbit around our young Sun.

This single cosmic event, they estimate, gave birth to elements that would become part of this disk – and which now make up roughly 0.3% of the Earth’s heaviest elements. Most of these are in the form on iodine, an element which is essential to biological processes. In this respect, this event may have played a role in the emergence of life here in the Solar System as well.

To put this event in perspective, consider that the Milky Way galaxy is an estimated 100,000 light years in diameter. This collision and the resulting explosion, therefore, took place roughly 1/100th the distance away. In fact, the research team indicated that if a similar event happened at the same distance today, the resulting radiation would outshine every star in the sky.

What is especially interesting about this study is the way it provides insight into an event that was both unique and highly consequential in the history and formation of Earth and our Solar System. “It sheds bright light on the processes involved in the origin and composition of our Solar System, and will initiate a new type of quest within disciplines, such as chemistry, biology and geology, to solve the cosmic puzzle,” Bartos summarized.

And as Márka indicated, it also addresses some of the deeper questions scientists have about the origins of life as we know it:

“Our results address a fundamental quest of humanity: Where did we come from and where are we going? It is very difficult to describe the tremendous emotions we felt when we realized what we had found and what it means for the future as we search for an explanation of our place in the universe.”

It also reaffirms what Carl Sagan famously said: “We are a way for the universe to know itself. Some part of our being knows this is where we came from. We long to return. And we can, because the cosmos is also within us… The nitrogen in our DNA, the calcium in our teeth, the iron in our blood, the carbon in our apple pies were made in the interiors of collapsing stars. We are made of starstuff.”

https://www.universetoday.com/142157/the-earths-gold-came-from-two-neutron-stars-that-collided-billions-of-years-ago-1/

Advertisements

By Stephanie Pappas

The Big Bang is commonly thought of as the start of it all: About 13.8 billion years ago, the observable universe went boom and expanded into being.

But what were things like before the Big Bang?

Short answer: We don’t know. Long answer: It could have been a lot of things, each mind-bending in its own way.

The first thing to understand is what the Big Bang actually was.

“The Big Bang is a moment in time, not a point in space,” said Sean Carroll, a theoretical physicist at the California Institute of Technology and author of “The Big Picture: On the Origins of Life, Meaning and the Universe Itself” (Dutton, 2016).

So, scrap the image of a tiny speck of dense matter suddenly exploding outward into a void. For one thing, the universe at the Big Bang may not have been particularly small, Carroll said. Sure, everything in the observable universe today — a sphere with a diameter of about 93 billion light-years containing at least 2 trillion galaxies — was crammed into a space less than a centimeter across. But there could be plenty outside of the observable universe that Earthlings can’t see because it’s physically impossible for the light to have traveled that far in 13.8 billion years.
Thus, it’s possible that the universe at the Big Bang was teeny-tiny or infinitely large, Carroll said, because there’s no way to look back in time at the stuff we can’t even see today. All we really know is that it was very, very dense and that it very quickly got less dense.

As a corollary, there really isn’t anything outside the universe, because the universe is, by definition, everything. So, at the Big Bang, everything was denser and hotter than it is now, but there was no more an “outside” of it than there is today. As tempting as it is to take a godlike view and imagine you could stand in a void and look at the scrunched-up baby universe right before the Big Bang, that would be impossible, Carroll said. The universe didn’t expand into space; space itself expanded.

“No matter where you are in the universe, if you trace yourself back 14 billion years, you come to this point where it was extremely hot, dense and rapidly expanding,” he said.

No one knows exactly what was happening in the universe until 1 second after the Big Bang, when the universe cooled off enough for protons and neutrons to collide and stick together. Many scientists do think that the universe went through a process of exponential expansion called inflation during that first second. This would have smoothed out the fabric of space-time and could explain why matter is so evenly distributed in the universe today.

Before the bang

It’s possible that before the Big Bang, the universe was an infinite stretch of an ultrahot, dense material, persisting in a steady state until, for some reason, the Big Bang occured. This extra-dense universe may have been governed by quantum mechanics, the physics of the extremely small scale, Carroll said. The Big Bang, then, would have represented the moment that classical physics took over as the major driver of the universe’s evolution.

For Stephen Hawking, this moment was all that mattered: Before the Big Bang, he said, events are unmeasurable, and thus undefined. Hawking called this the no-boundary proposal: Time and space, he said, are finite, but they don’t have any boundaries or starting or ending points, the same way that the planet Earth is finite but has no edge.

“Since events before the Big Bang have no observational consequences, one may as well cut them out of the theory and say that time began at the Big Bang,” he said in an interview on the National Geographic show “StarTalk” in 2018.

Or perhaps there was something else before the Big Bang that’s worth pondering. One idea is that the Big Bang isn’t the beginning of time, but rather that it was a moment of symmetry. In this idea, prior to the Big Bang, there was another universe, identical to this one but with entropy increasing toward the past instead of toward the future.

Increasing entropy, or increasing disorder in a system, is essentially the arrow of time, Carroll said, so in this mirror universe, time would run opposite to time in the modern universe and our universe would be in the past. Proponents of this theory also suggest that other properties of the universe would be flip-flopped in this mirror universe. For example, physicist David Sloan wrote in the University of Oxford Science Blog, asymmetries in molecules and ions (called chiralities) would be in opposite orientations to what they are in our universe.

A related theory holds that the Big Bang wasn’t the beginning of everything, but rather a moment in time when the universe switched from a period of contraction to a period of expansion. This “Big Bounce” notion suggests that there could be infinite Big Bangs as the universe expands, contracts and expands again. The problem with these ideas, Carroll said, is that there’s no explanation for why or how an expanding universe would contract and return to a low-entropy state.

Carroll and his colleague Jennifer Chen have their own pre-Big Bang vision. In 2004, the physicists suggested that perhaps the universe as we know it is the offspring of a parent universe from which a bit of space-time has ripped off.

It’s like a radioactive nucleus decaying, Carroll said: When a nucleus decays, it spits out an alpha or beta particle. The parent universe could do the same thing, except instead of particles, it spits out baby universes, perhaps infinitely. “It’s just a quantum fluctuation that lets it happen,” Carroll said. These baby universes are “literally parallel universes,” Carroll said, and don’t interact with or influence one another.

If that all sounds rather trippy, it is — because scientists don’t yet have a way to peer back to even the instant of the Big Bang, much less what came before it. There’s room to explore, though, Carroll said. The detection of gravitational waves from powerful galactic collisions in 2015 opens the possibility that these waves could be used to solve fundamental mysteries about the universes’ expansion in that first crucial second.

Theoretical physicists also have work to do, Carroll said, like making more-precise predictions about how quantum forces like quantum gravity might work.

“We don’t even know what we’re looking for,” Carroll said, “until we have a theory.”

https://www.livescience.com/65254-what-happened-before-big-big.html

Returning to Earth from the International Space Station, Canadian astronaut Chris Hadfield remarked how making the right decision is vital in high pressure environments, saying:

Most of the time, you only really get one try to do most of the critical stuff and the consequences are life or death.

Mankind is preparing for a new space age: manned missions to Mars are no longer a distant dream and commercial ventures may open up the prospect for non astronauts to visit other planets. Understanding how gravity impacts the way in which we make decisions has never been more pressing.

All living organisms on Earth have evolved under a constant gravitational field. That’s because gravity is always there and it is part of the background of our perceptual world: we cannot see it, smell it or touch it.

Nevertheless, gravity plays a fundamental role in human behaviour and cognition.

The central nervous system does not have “specialised” sensors for gravity. Rather, gravity is inferred through the integration of several sensory signals in a process termed graviception. This involves vision, our balance system and information from the joints and muscles.

Sophisticated organs inside the inner ear are particularly important in this process. Under terrestrial gravity, when our head is upright, small stones – the vestibular otoliths – are perfectly balanced on a viscous fluid.

When we move the head, for instance looking up, gravity makes the fluid move and this triggers a signal which informs the brain that our head is no longer upright.

Long-duration exposure to zero gravity, such as during space missions, leads to several structural and functional changes in the human body. While the influence of zero gravity on our physical functions has been largely investigated, the effects on decision-making are not yet fully understood.

Given the technical limitations and the expected gap of a few minutes in communication with Earth if we go to Mars, knowing the impact of altered gravity on how people make decisions is essential.

Novelty versus routine

In a nutshell, human behaviour is a constant trade off between the exploitation of familiar but possibly sub-optimal choices and the exploration of new and potentially more profitable alternatives.

For example, in a restaurant you can exploit by choosing your usual chocolate cake, or you can explore by trying that tiramisu that you’ve not had before. Thus, exploitation involves routine behaviour, while exploration involves varying choices.

We investigated whether alterations in gravity impact the choice between routine and novel behaviour. We asked participants to come to the lab and produce sequences of numbers as randomly as possible.

Every time they heard a beep sound, they needed to name a number between one and nine. Importantly, there was no time to think or to count, just name a number.

Critically, this task requires our brain to suppress routine responses and generate novel responses, and it can be considered a proxy for successful adaptive behaviour.

But how does this change under the influence of gravity? We manipulated how the otoliths sense gravity by changing the orientation of participants’ bodies with respect to the direction of terrestrial gravity by asking them to lie down.

When we are upright, our body and otoliths are congruent with the direction of gravity, while when we are lying down they are orthogonal (at right angles).

This is a very efficient laboratory manipulation, which allows us to mimic alterations of gravitational signals reaching the brain. It is actually a better way to study the effects of gravity than sending someone to space.

That’s because when we are in space we are also affected by weightlessness, radiation and isolation – and it can be hard to separate what effect the lack of gravity alone has.

Our results indicate that lying down does seem to influence how people make decisions, with participants struggling with random number generation. This indicates that people are therefore less prone to generating novel behaviours in the absence of gravity.

This may be of importance to the planning of actual space missions. Astronauts are in an extremely challenging environment in which decisions must be made quickly and efficiently. An automatic preference for routine or stereotyped options might not help with complex problem solving, and could even place life at risk.

The results add to research suggesting that people also suffer changes in perception and cognition when under conditions mimicking zero-gravity. The absence of gravity can be profoundly unsettling, and can potentially compromise performance levels in many ways.

This suggests that astronauts may benefit from some sort of cognitive enhancement training to help them overcome the effects of altered gravity on the brain, and to assure successful and safe manned space missions.The Conversation

https://www.sciencealert.com/exposure-to-zero-gravity-can-change-how-human-make-decisions

sounds like a science fiction plotline—a space elevator. Now, it may be a possibility.

Scientists at Japan’s Shizuoka University are testing the space elevator, a potential solution to getting materials or satellites off of Earth. On September 11, the team will launch a scale model of the motorized box into Earth’s orbit.

The elevator consists of two cubic satellites that are only 4 inches on each side. The satellites will be connected by a 33-foot steel cable. The parts of the machine will launch on H-IIB rocket from the Japan Aerospace Exploration Agency’s Tanegashima Space Center to the International Space Station (ISS).

“It’s going to be the world’s first experiment to test elevator movement in space,” a university spokesman told AFP. From the ISS, the two satellites will be released into space. On the cable that attaches the satellites, a container will move using a motor. There will be a camera attached to the satellites that will record the container in action.

In the past, astronauts have extended a cable in space, but this is the first time that a container will move along a cable. Scientists have struggled with creating a space elevator in the past, so if this experiment is successful it will be a welcome step forward in the process. A space elevator could provide a low-cost solution to send materials—or people—to the station. One difficult part of creating a space elevator is finding the right material for a cable.

“No current material exists with sufficiently high tensile strength and sufficiently low density out of which we could construct the cable,” Keith Henson, a technologist and engineer, told Gizmodo. “There’s nothing in sight that’s strong enough to do it — not even carbon nanotubes.” And if to much pressure is applied, there’s the worry of the cable unzipping. The elevator would also have to avoid space junk and satellites, withstand winds, and be able to fight the gravity from the Sun, Moon, and Earth.

However, the Japanese team thinks the elevator could work. Obayashi Corp., which is serving as the technical advisor to the Shizuoka University researchers, is working on their own elevator experiment where six oval shaped cars that can hold 30 people each would ascend around 22,370 miles into space. The test next week could provide valuable data in making those plans.

“In theory, a space elevator is highly plausible.” Yoji Ishikawa, who leads the Obayashi research team, told the Japanese paper The Mainichi. “Space travel may become something popular in the future.”

https://www.newsweek.com/could-we-take-elevator-space-japan-1107684

universe
The detailed, all-sky picture of the infant universe created from nine years of WMAP data. The image reveals 13.77 billion year old temperature fluctuations (shown as color differences) that correspond to the seeds that grew to become the galaxies. The signal from our galaxy was subtracted using the multi-frequency data. This image shows a temperature range of ± 200 microKelvin.CREDIT: NASA/WMAP SCIENCE TEAM

by Jesse Shanahan

In a study published earlier this month, a team of theoretical physicists is claiming to have discovered the remnants of previous universes hidden within the leftover radiation from the Big Bang. Our universe is a vast collection of observable matter, like gas, dust, stars, etc., in addition to the ever-elusive dark matter and dark energy. In some sense, this universe is all we know, and even then, we can only directly study about 5% of it, leaving 95% a mystery that scientists are actively working to solve. However, this group of physicists is arguing that our universe isn’t alone; it’s just one in a long line of universes that are born, grow, and die. Among these scientists is mathematical physicist Roger Penrose, who worked closely with Stephen Hawking and currently is the Emeritus Rouse Ball Professor of Mathematics at Oxford University. Penrose and his collaborators follow a cosmological theory called conformal cyclic cosmology (CCC) in which universes, much like human beings, come into existence, expand, and then perish.

As a universe ages, it expands, and the constituent parts grow farther and farther apart from each other. Consequently, the interactions between galaxies that drive star formation and evolution become rarer. Eventually, the stars die out, and the remaining gas and dust is captured by black holes. In one of his most famous theories, Stephen Hawking proposed that this isn’t the end; black holes might have a way to slowly lose mass and energy by radiating certain particles. So, after many eons, the remaining black holes in the universe would disappear, leaving only disparate particles. Seemingly a wasteland, this end-state eventually mirrors the environment of our universe’s birth, and so, the cycle starts anew.

universe 2
Artist’s logarithmic scale conception of the observable universe with the Solar System at the center, inner and outer planets, Kuiper belt, Oort cloud, Alpha Centauri, Perseus Arm, Milky Way galaxy, Andromeda galaxy, nearby galaxies, Cosmic Web, Cosmic microwave radiation and Big Bang’s invisible plasma on the edge.CREDIT: WIKIPEDIA/PABLO CARLOS BUDASSI

When our universe was very young, before any recognizable components like stars, planets, or galaxies formed, it was filled with a dense, hot soup of plasma. As the universe expanded, it cooled, and eventually, particles could combine to form atoms. Eventually, the interaction and fusion of these atoms resulted in all of the matter that we observe today. However, we can still observe the leftover radiation from that initial, dense period in our universe’s history. This leftover glow, called the Cosmic Microwave Background (CMB), is the oldest electromagnetic radiation, and it fills the entirety of our universe. If the CCC theory were true, then there would be hints of previous universes in our universe’s CMB.

At the end of a universe, when those final black holes dissolve, CCC theory states they should leave behind a signature that would survive the death of that universe and persist into the next. Although not definitive proof of previous universes, detecting that signature would be strong evidence in support of CCC theory. In searching for these “Hawking points”, cosmologists face a difficult obstacle as the CMB is faint and varies randomly. However, Penrose is claiming that a comparison between a model CMB with Hawking points and actual data from our CMB has proven that Hawking points actually exist. If true, this would be the first-ever detection of evidence from another universe.

Unfortunately, as groundbreaking as this discovery seems, the scientific community has largely dismissed it. One of the fundamental characteristics of the CMB is that, although it has patterns, the variations are entirely statistically random. In fact, Penrose’s former collaborator, Stephen Hawking, spotted his own initials in the CMB while others have found a deer, a parrot, and numerous other recognizable shapes in the noise. Similarly, the Wilkinson Anisotropy Microscope Probe that mapped the CMB released an interactive image where you can search for familiar shapes and patterns. An avoidable result of both these random fluctuations and the sheer size of the CMB is that if scientists look hard enough, they can find whatever pattern they need, like the existence of Hawking points, perhaps. Another criticism of Penrose’s claim is that if CCC theory holds true, our universe should have tens of thousands of Hawking points in the CMB. Regrettably, Penrose could find only about 20.

Still, the possibility of alternate universes, whether long-dead or existing in parallel to our own, is tantalizing. Many other theories also claim to find traces of other universes hiding in the patterns of the CMB as well. Although it sounds like science fiction, we are left to wonder: is this just the cosmological equivalent of seeing shapes in random clouds or will scientists one day discover that we are one among many infinite universes?

Jesse Shanahan is an astrophysicist, EMT, and science communicator. For more space and language news, follow her on Twitter here.

https://www.forbes.com/sites/jesseshanahan/2018/08/24/did-scientists-actually-spot-evidence-of-another-universe/#2278663f1425

milky-way-died-once-reborn-noguchi_1024

The Milky Way is a zombie. No, not really, it doesn’t go around eating other galaxies’ brains. But it did “die” once, before flaring back to life. That’s what a Japanese scientist has ascertained after peering into the chemical compositions of our galaxy’s stars.

In a large section of the Milky Way, the stars can be divided into two distinct populations based on their chemical compositions. The first group is more abundant in what is known as α elements – oxygen, magnesium, silicon, sulphur, calcium and titanium. The second is less abundant in α elements, and markedly more abundant in iron.

The existence of these two distinct populations implies that something different is happening during the formation stages. But the precise mechanism behind it was unclear.

Astronomer Masafumi Noguchi of Tohoku University believes his modelling shows the answer. The two different populations represent two different periods of star formation, with a quiescent, or “dormant” period in between, with no star formation.

Based on the theory of cold flow galactic accretion proposed back in 2006, Noguchi has modelled the evolution of the Milky Way over a 10 billion-year period.

Originally, the cold flow model was suggested for much larger galaxies, proposing that massive galaxies form stars in two stages. Because of the chemical composition dichotomy of its stars, Noguchi believes this also applies to the Milky Way.

That’s because the chemical composition of stars is dependent on the gases from which they are formed. And, in the early Universe, certain elements – such as the heavier metals – hadn’t yet arrived on the scene, since they were created in stars, and only propagated once those stars had gone supernova.

In the first stage, according to Noguchi’s model, the galaxy is accreting cold gas from outside. This gas coalesces to form the first generation of stars.

After about 10 million years, which is a relatively short timescale in cosmic terms, some of these stars died in Type II supernovae. This propagated the α elements throughout the galaxy, which were incorporated into new stars.

But, according to the model, it all went a bit belly-up after about 3 billion years.

“When shock waves appeared and heated the gas to high temperatures 7 billion years ago, the gas stopped flowing into the galaxy and stars ceased to form,” a release from Tohoku University says.

During a hiatus of about 2 billion years, a second round of supernovae took place – the much longer scale Type Ia supernova, which typically occur after a stellar lifespan of about 1 billion years.

It’s in these supernovae that iron is forged, and spewed out into the interstellar medium. When the gas cooled enough to start forming stars again – about 5 billion years ago – those stars had a much higher percentage of iron than the earlier generation. That second generation includes our Sun, which is about 4.6 billion years old.

Noguchi’s model is consistent with recent research on our closest galactic neighbour, Andromeda, which is thought to be in the same size class as the Milky Way. In 2017, a team of researchers published a paper that found Andromeda’s star formation also occurred in two stages, with a relatively quiescent period in between.

If the model holds up, it may mean that the evolution models of galaxies need to be revised – that, while smaller dwarf galaxies experience continuous star formation, perhaps a “dead” period is the norm for massive ones.

If future observations confirm, who’s up for renaming our galaxy Frankenstein?

Noguchi’s paper has been published in the journal Nature.

https://www.sciencealert.com/milky-way-star-formation-two-generations-cold-flow-accretion-model-noguchi

FOR DECADES MARS has teased scientists with whispers of water’s presence. Valleys and basins and rivers long dry point to the planet’s hydrous past. The accumulation of condensation on surface landers and the detection of vast subterranean ice deposits suggest the stuff still lingers in gaseous and solid states. But liquid water has proved more elusive. Evidence to date suggests it flows seasonally, descending steep slopes in transient trickles every Martian summer. The search for a big, enduring reservoir of wet, potentially life-giving water has turned up nothing. Until now.

The Italian Space Agency announced Wednesday that researchers have detected signs of a large, stable body of liquid water locked away beneath a mile of ice near Mars’ south pole. The observations were recorded by the Mars Advanced Radar for Subsurface and Ionosphere Sounding instrument—Marsis for short. “Marsis was born to make this kind of discovery, and now it has,” says Roberto Orosei, a radioastronomer at the National Institute for Astrophysics, who led the investigation. His team’s findings, which appear in this week’s issue of Science, raise tantalizing questions about the planet’s geology—and its potential for harboring life.

Marsis collected its evidence from orbit, flying aboard the European Space Agency’s Mars Express spacecraft. It works by transmitting pulses of low-frequency electromagnetic waves toward the red planet. Some of those waves interact with features at and below the Martian surface and reflect back toward the instrument, carrying clues about the planet’s geological composition. Conceptually, using the instrument to study Mars’ polar regions couldn’t be more straightforward: Just point it toward the ice and see what bounces back.

In practice, though, it’s a lot more complicated. Marsis spends relatively little time above Planum Australe, the southern polar plane of Mars and the focus of Orosei’s team’s investigation. That meant the researchers could only listen for echoes periodically. It would take many readings—and many years—to get a clear picture of what lies hidden beneath the planet’s southern ice cap. So in May of 2012, on the heels of a software upgrade that enabled Marsis to acquire more detailed data, the researchers began their survey.

Three and a half years and 29 observations later, they had a radiogrammatic map of Mars’ southern polar plane. When they cross-referenced all their measurements, something immediately seized their attention: Bright reflections in the radar signals, corresponding to what Orosei now calls “a well-defined anomaly” some 12 miles across and several feet deep, roughly one mile beneath the surface of the polar ice cap. The surface of an ice cap tends to reflect radar waves more strongly than the regions below it. But on multiple passes, Marsis had detected uncommonly strong echoes originating from beneath the southern pole.

Or rather: Uncommonly strong for a solid material.

Analyses of subglacial lakes on our own planet—like the ones beneath the Antarctic and Greenland ice sheets—have shown that water reflects radar more strongly than rock and sediment. And in fact, the radar profile of this region of Mars’ southern pole resembles those of subglacial lakes here on Earth.

The researchers looked for other explanations for the bright signals. A layer of frozen carbon dioxide above or below the polar cap, for example, could conceivably produce readings like the ones they observed—though the researchers deemed this, and all other explanations that they considered, less likely than the presence of liquid water.

“I can’t absolutely prove it’s water, but I sure can’t think of anything else that looks like this thing does other than liquid water,” says Richard Zurek, chief scientist for the Mars Program Office at NASA’s Jet Propulsion Laboratory, who was unaffiliated with the study. “Maybe that has to do with a shortage of imagination on my part,” he adds, “but it probably has to do with a shortage of data, too.” More radar observations, he says, could give rise to explanations scientists haven’t even thought of yet—and more questions, too.

Not that there’s a shortage of unanswered questions. Still unclear is how the water remains liquid at temperatures tens of degrees below 0° Celsius. Orosei and his team think the answer could be magnesium, calcium, and sodium salts, all of which are present in Martian rock, that have dissolved in the water, lowering its freezing point.

Another question is whether future observations by Marsis and other spacecraft will detect more reservoirs beneath Mars’ southern ice cap. “If this lake is a single occurrence, if there is no other liquid water anywhere else, then the implication would be that we are seeing a quirk of nature—an effect of residual decay, a hydrothermal vent, some thermal irregularity in the crust,” Orosei says. “But, if we were to find that Mars possesses not one subglacial lake, but several, that would change the game.”

More lakes would suggest that the conditions necessary for their existence aren’t so rare. And if those conditions have persisted throughout the planet’s history, then subsurface reservoirs of liquid water could serve as a bridge to the early environment of Mars—a time capsule of sorts from a period billions of years ago, when Mars was a warm, wet planet.

Which, of course, raises the biggest question of all: Could there be life in the waters beneath Mars’ southern ice caps?

It’s certainly possible, says Montana State University glaciologist John Priscu. An expert in the biogeochemistry and microbiology of subglacial environments here on Earth, Priscu led the first team to discover microbial life in a lake beneath the West Antarctic ice sheet. “You need three things for life: liquid water; an energy source, like leaching minerals, which we know Mars has; and a biological seed,” he says. It’s plausible that the lake beneath Mars’ southern pole possesses the first two. As for the whole spark-of-life thing, “I’m not sure we’ll ever know where the seed comes from,” he says. But if Earth got a seed, maybe Mars did, too.

But we’re getting ahead of ourselves. “It’s tempting to think that if life ever evolved on Mars, it would have to be present today,” Orosei says, a subglacial lake like the one his team discovered would be an excellent place to look. But first comes the search for more lakes. And after that, perhaps landers equipped with drills. “Going from zero bodies of water to one is a big change, for sure,” Orosei says, “but the full extent of this discovery depends on what we find next.”

https://www.wired.com/story/large-body-of-liquid-water-on-mars/