June Almeida: discoverer of the first coronavirus

June Almeida with her electron microscope at the Ontario Cancer Institute in Toronto in 1963

The woman who discovered the first human coronavirus was the daughter of a Scottish bus driver, who left school at 16.

June Almeida went on to become a pioneer of virus imaging, whose work has come roaring back into focus during the present pandemic.

Covid-19 is a new illness but it is caused by a coronavirus of the type first identified by Dr Almeida in 1964 at her laboratory in St Thomas’s Hospital in London.

The virologist was born June Hart in 1930 and grew up in a tenement near Alexandra Park in the north east of Glasgow.

She left school with little formal education but got a job as a laboratory technician in histopathology at Glasgow Royal Infirmary.

Later she moved to London to further her career and in 1954 married Enriques Almeida, a Venezuelan artist.

Common cold research
The couple and their young daughter moved to Toronto in Canada and, according to medical writer George Winter, it was at the Ontario Cancer Institute that Dr Almeida developed her outstanding skills with an electron microscope.

She pioneered a method which better visualised viruses by using antibodies to aggregate them.

Mr Winter told Drivetime on BBC Radio Scotland her talents were recognised in the UK and she was lured back in 1964 to work at St Thomas’s Hospital Medical School in London, the same hospital that treated Prime Minister Boris Johnson when he was suffering from the Covid-19 virus.

On her return, she began to collaborate with Dr David Tyrrell, who was running research at the common cold unit in Salisbury in Wiltshire.

Mr Winter says Dr Tyrrell had been studying nasal washings from volunteers and his team had found that they were able to grow quite a few common cold-associated viruses but not all of them.

One sample in particular, which became known as B814, was from the nasal washings of a pupil at a boarding school in Surrey in 1960.

They found that they were able to transmit common cold symptoms to volunteers but they were unable to grow it in routine cell culture.

However, volunteer studies demonstrated its growth in organ cultures and Dr Tyrrell wondered if it could be seen by an electron microscope.

They sent samples to June Almeida who saw the virus particles in the specimens, which she described as like influenza viruses but not exactly the same.

She identified what became known as the first human coronavirus.

Coronaviruses are a group of viruses that have a halo or crown-like (corona) appearance when viewed under a microscope.

Mr Winter says that Dr Almeida had actually seen particles like this before while investigating mouse hepatitis and infectious bronchitis of chickens.

However, he says her paper to a peer-reviewed journal was rejected “because the referees said the images she produced were just bad pictures of influenza virus particles”.

The new discovery from strain B814 was written up in the British Medical Journal in 1965 and the first photographs of what she had seen were published in the Journal of General Virology two years later.

According to Mr Winter, it was Dr Tyrrell and Dr Almeida, along with Prof Tony Waterson, the man in charge at St Thomas’s, who named it coronavirus because of the crown or halo surrounding it on the viral image.

Dr Almeida later worked at the Postgraduate Medical School in London, where she was awarded a doctorate.

She finished her career at the Wellcome Institute, where she was named on several patents in the field of imaging viruses.

After leaving Wellcome, Dr Almeida become a yoga teacher but went back into virology in an advisory role in the late 1980s when she helped take novel pictures of the HIV virus.

June Almeida died in 2007, at the age of 77.

Now 13 years after her death she is finally getting recognition she deserves as a pioneer whose work speeded up understanding of the virus that is currently spreading throughout the world.


Coronavirus Vaccine Could Be Ready in Six Months from Sarah Gilbert at Oxford University

By Olivia Konotey-Ahulu

A vaccine against the coronavirus could be ready by September, according to a scientist leading one of Britain’s most advanced teams.

Sarah Gilbert, professor of vaccinology at Oxford University, told The Times on Saturday that she is “80% confident” the vaccine would work, and could be ready by September. Experts have warned the public that vaccines typically take years to develop, and one for the coronavirus could take between 12 to 18 months at best.

In the case of the Oxford team, however, “it’s not just a hunch, and as every week goes by we have more data to look at,” Gilbert told the London newspaper.

Gilbert’s team is one of dozens worldwide working on a vaccine and is the most advanced in Britain, she told the Times. As the country looks set to begin its fourth week under lockdown, a vaccine could be fundamental in easing the measures and returning to normal life. Gilbert said human trials are due to start in the next two weeks.

Her remarks came as the death toll from the virus pushed past 100,000 globally. On Friday, the U.K. reported 980 fatalities, taking the total count from the virus to 8,958, and the government has repeatedly pleaded with the public to obey lockdown rules during the long Easter holiday weekend. As Prime Minister Boris Johnson begins his recovery after a spell in intensive care, Patrick Vallance, the government’s chief scientific adviser, warned he expects the number of deaths to increase for “a few weeks” yet.

Manufacturing the millions of vaccine doses necessary could take months. Gilbert said she’s in discussions with the British government about funding, and starting production before the final results are in, allowing the public to access the vaccine immediately if it proves to work. She said success by the autumn was “just about possible if everything goes perfectly.”


Scientists create mutant enzyme that recycles plastic bottles in hours

The company behind the breakthough, Carbios, has partnered with major companies including Pepsi and L’Oréal. Photograph: Mario Anzuoni/Reuters

A mutant bacterial enzyme that breaks down plastic bottles for recycling in hours has been created by scientists.

The enzyme, originally discovered in a compost heap of leaves, reduced the bottles to chemical building blocks that were then used to make high-quality new bottles. Existing recycling technologies usually produce plastic only good enough for clothing and carpets.

The company behind the breakthrough, Carbios, said it was aiming for industrial-scale recycling within five years. It has partnered with major companies including Pepsi and L’Oréal to accelerate development. Independent experts called the new enzyme a major advance.

Billions of tonnes of plastic waste have polluted the planet, from the Arctic to the deepest ocean trench, and pose a particular risk to sea life. Campaigners say reducing the use of plastic is key, but the company said the strong, lightweight material was very useful and that true recycling was part of the solution.

The new enzyme was revealed in research published on Wednesday in the journal Nature. The work began with the screening of 100,000 micro-organisms for promising candidates, including the leaf compost bug, which was first discovered in 2012.

“It had been completely forgotten, but it turned out to be the best,” said Prof Alain Marty at the Université de Toulouse, France, the chief science officer at Carbios.

The scientists analysed the enzyme and introduced mutations to improve its ability to break down the PET plastic from which drinks bottles are made. They also made it stable at 72C, close to the perfect temperature for fast degradation.

The team used the optimised enzyme to break down a tonne of waste plastic bottles, which were 90% degraded within 10 hours. The scientists then used the material to create new food-grade plastic bottles.

Carbios has a deal with the biotechnology company Novozymes to produce the new enzyme at scale using fungi. It said the cost of the enzyme was just 4% of the cost of virgin plastic made from oil.

Waste bottles also have to be ground up and heated before the enzyme is added, so the recycled PET will be more expensive than virgin plastic. But Martin Stephan, the deputy chief executive at Carbios, said existing lower-quality recycled plastic sells at a premium due to a shortage of supply.

“We are the first company to bring this technology on the market,” said Stephan. “Our goal is to be up and running by 2024, 2025, at large industrial scale.”

He said a reduction in plastic use was one part of solving the waste problem. “But we all know that plastic brings a lot of value to society, in food, medical care, transportation. The problem is plastic waste.” Increasing the collection of plastic waste was key, Stephan said, with about half of all plastic ending up in the environment or in landfill.

Another team of scientists revealed in 2018 that they had accidentally created an enzyme that breaks down plastic drinks bottles. One of the team behind this advance, Prof John McGeehan, the director of the Centre for Enzyme Innovation at the University of Portsmouth, said Carbios was the leading company engineering enzymes to break down PET at large scale and that the new work was a major advance.

“It makes the possibility of true industrial-scale biological recycling of PET a possibility. This is a very large advance in terms of speed, efficiency and heat tolerance,” McGeehan said. “It represents a significant step forward for true circular recycling of PET and has the potential to reduce our reliance on oil, cut carbon emissions and energy use, and incentivise the collection and recycling of waste plastic.”

Scientists are also making progress in finding biological ways to break down other major types of plastic. In March, German researchers revealed a bug that feasts on toxic polyurethane, while earlier work has shown that wax moth larvae – usually bred as fish bait – can eat up polythene bags.


3 different early human ancestors lived at the same time, in the same place

A 3D rendering of Homo erectus from an exhibit at the Museum of Natural History in Vienna, Austria.


Homo sapiens have existed in the form we do today for only about 50,000 years. Go back 2 million years ago though, and there were several kinds of archaic humans. It was near the end of the Australopithecus era (you may have heard of Lucy), and the beginning of the time of Paranthropus and Homo erectus, one of Homo sapiens’ direct ancestors. It’s easy to assume that one group died off before the next came on the scene, but they overlapped, according to new research.

“We know that the old idea, that when one species occurs another goes extinct and you don’t have much overlap, that’s just not the case,” study coauthor Andy Herries, a paleoanthropologist at La Trobe University in Australia, told Smithsonian magazine.

The recent find, published in the journal Science, comes out of the Drimolen Paleocave System in South Africa. This area is a gold mine of ancient ancestry; over 160 remains have been found there already, and now, the oldest Homo erectus discovery, a cranium, has been found there, dating to about 2 million years ago. Also found were skull fragments and teeth of Paranthropus robustus, and our earlier human ancestor, Australopithecus, who was also known to live in the same area at the same time.

Lucy belonged to the extinct species Australopithecus afarensis, portrayed here in a sculptor’s rendering. (Photo: Dave Einsel/Getty Images)

These recently discovered fossils are the oldest examples of their respective species ever discovered.

“Here we have evidence of all three genera, Homo, Paranthropus and Australopithecus, sharing the landscape at just about the same time,” David Strait, a paleoanthropologist at Washington University in St. Louis and co-author of the paper, told The New York Times. “It is our first really good look at the time that this replacement is taking place and that’s pretty exciting.”

It’s well-known that the later human variants (hominins is the term scientists use for modern and related humans) diverged, evolved and then intermixed: Groups of hominins left East Africa and explored North Africa, Europe and Asia. As those early humans moved through various environments, some stayed and adapted to local conditions while others moved on. They might bump into each other again, sometimes using the same places to fish, or shelter. And sometimes they would die there, leaving the fossil record for modern Homo sapiens to find.

“The truth is that from about 2 million years ago until around 10,000 years ago, the world was home, at one and the same time, to several human species. And why not? Today, there are many species of foxes, bears, and pigs. The earth of a hundred millennia ago was walked by at least six different species of man,” writes Yuval Harari in his book, “Sapiens: A Brief History of Humankind.”

A reconstruction of a Neanderthal who lived some 50,000 years ago in what’s now Spain, by Italian scientist Fabio Fogliazza. (Photo: Cesar Manso/AFP/Getty Images)

Muscular, bulky Neanderthals were well-suited to the Ice Age climate of western Eurasia, and Homo erectus populated east Asia (and did so successfully for 2 million years). Homo soloensis was found on the Indonesian island of Java, and another tiny island was home to Homo floresiensis; the people there were petite, reaching a maximum height of just 3 1/2 feet due to limited local food resources. The remains of Homo denisova were found in a Siberian cave, but they traveled far and wide; their DNA has been found in modern Australian aborigines, Polynesians, Fijiians and others.

Other humans continued to evolve within Africa, including Homo rudolphenisis and Homo ergaster. And like the others, Homo sapiens (that’s us) also came out of Africa, and then met up with many of these species as we moved around the world. And by “met up with,” I mean a few things, including sex that resulted in offspring. Just last year, a half-Denisovan, half-Neanderthal child, was found, proving that successful procreation occurred.

And of course, the proof is also in our DNA. As mentioned above, Denisovan DNA is present in some populations and most non-Africans have some Neanderthal DNA. (For example, according to my 23andMe report, I have 249 variants, which is lower than average.)

We Homo sapiens live in a lonely time: Throughout most of human history, there were many other kinds of humans on the planet with us — we are still discovering new ones all the time. So what happened to them all?

There are plenty of theories: “The Interbreeding Theory tells a story of attraction, sex, and mingling,” writes Harare. “As the African immigrants spread around the world, they bred with other human populations, and people today are the outcome of this inbreeding.”

This idea is at least partially backed up by Denisovan and Neanderthal DNA found in modern humans. But another possibility is that Homo sapiens outcompeted Neanderthals and others, over time starving them of resources. Or we may have killed these other people for being so different from us. As Harare writes, “Tolerance is not a sapiens trademark.”


Cornell scientists develop cold-resistant corn

Professor David Stern examines test corn plants at Boyce Thompson Institute with Coralie Salesse-Smith. They are looking for varieties that will be better able to cope with cold weather. | Boyce Thompson Institute photo

Corn is the third largest grain crop in Canada and the number one crop in Ontario in terms of production. Nationally, yields vary depending on weather, and 2019 was a particularly challenging year.

Heavy rain and colder than normal temperatures made planting conditions difficult in Eastern Canada. Very dry conditions persisted into the growing season in parts of Western Canada, while unseasonal rain and early snow on the Prairies slowed harvest for many farmers.

Corn is one of the world’s most important crops, not only for food but for animal feed and biofuel. However, as a grass of tropical origin, it is particularly sensitive to cold weather. That trait can be problematic, especially when the growing season is only four or five months.

At Cornell University’s Boyce Thompson Institute in New York, scientists have developed a chill-tolerant corn variety that recovers much more quickly after a cold snap. It could broaden the latitudes in which corn can be grown and help farmers increase yields, especially in the face of wildly fluctuating weather patterns due to climate change.

“While the research is too early-stage to know for sure, the chilling-tolerant corn has promise to help crops cope with early cold snaps, as well as recover more quickly from drought,” said David Stern, president of the Boyce Thompson Institute and adjunct professor of plant biology in Cornell University’s College of Agriculture and Life Sciences.

“In terms of cold snaps, the combination of cold weather and strong spring sunlight can cause corn leaves to bleach, weakening or even killing the plants. The chilling-tolerant corn is less prone to bleaching, allowing it to recover more quickly. As a result, farmers could potentially plant earlier and harvest earlier, avoiding the frequent drought-prone conditions of late summer that occur just when ears are filling with grain. The potential benefits are a more flexible spring planting schedule, and an earlier harvest.”

Research in 2018 showed that increasing levels of an enzyme called rubisco led to bigger and faster-maturing plants. Rubisco is needed by plants to turn atmospheric carbon dioxide into sugar but, in cold weather, its levels in corn leaves decrease dramatically.

“Plants are very good at sensing temperature and seem to deliberately reduce the amount of rubisco when it’s cold,” said Stern.

“In doing so, plants can save the energy it takes to make rubisco and other proteins, as well as generally slow down metabolism, just like many living organisms do in the cold (think of hibernation).”

Rubisco is made up of proteins — eight large subunits and eight small ones with help from a third protein called RAF1. Because rubisco is a protein, it is made up of amino acids, which are rich in nitrogen, making rubisco a nitrogen reservoir. However, Rubisco is actually an inefficient enzyme so boosting its function will boost plant growth.

“We introduced transgenes that increase the abundance of (the) three proteins: the large subunit of rubisco, the small subunit and RAF1,” said Stern.

“In the modified corn, all three proteins are more abundant, thus increasing the level of Rubisco.”

The scientists grew plants for three weeks at 25 C, lowered the temperature to 14 C for two weeks and then returned it to 25 C, which is a considerable temperature swing. The intent was to test resistance and monitor the factors that can help plants withstand stress.

“The corn with more rubisco performed better than regular corn before, during and after chilling,” said Coralie Salesse-Smith, a PhD candidate in Stern’s lab during the study and the research paper’s first author.

“We were able to reduce the severity of chilling stress and allow for a more rapid recovery.”

Compared to traditional corn, the genetically modified corn had higher photosynthesis rates throughout the experiment and recovered more quickly from the chilling stress with less damage to the molecules responsible for photosynthesis. As a result, the plant grew taller and developed mature ears more quickly following a cold spell.

“What scientists are trying to build into plants is resilience — the ability to withstand a variety of shocks whose frequency and magnitude cannot be reliably predicted,” said Stern.

“In the laboratory, we can only test a small number of simulated climactic conditions. What happens when cold is combined with drought? Flooding with a heat wave? The real world of agriculture is far more complicated than a lab study. So, putting this kind of corn in the field is the best way to test its resilience.”

He said that the technology to bolster corn into a chill-resistant variety is being tested for the first time this growing season by a large seed company. They will know later this year or early next year if the plant is responding the way they expect and if it works as well in their elite field varieties as it does in the laboratory.

“If it does, the traits would move into their standard breeding pipeline and farmers would see the seed in six to 10 years. That is the reality of breeding for new corn traits,” said Stern.

Meanwhile, several research projects continue.

“One is to improve the activity, or speed, of the rubisco enzyme,” he said.

“In corn, only about 70 percent of the enzyme is working at any given time. We would like to increase that to 80 percent or 90 percent. Another path is to combine the rubisco trait with other genes that can increase photosynthesis. Rubisco is only one player in a complicated metabolic network, and we need to target other steps in the pathway as well. A third direction is to combine this higher photosynthesis-chilling tolerance trait with genes that improve tolerance to insects, drought or heat. This moves towards the ‘optimal’ resilient and climate-ready plant that would be a long-term goal.”

It is possible this approach could be used on other crops such as sugar cane and sorghum. The research paper was published online in the Plant Biotechnology Journal.


Scientists generate organic solar cells that reliably work for 27,000 years outdoors

Thin, transparent and flexible, organic solar cells look perfect for harnessing the sun’s energy from pretty much any surface, including windows, vehicles and smartphones. But they’ve been dogged by the perception that they’re not stable enough to survive in the real world. Now researchers in the US have demonstrated it’s possible to create organic solar cells that reliably work for 27,000 years outdoors, quashing the idea that long-lived devices are impossible.

The reliability of organic photovoltaic (OPV) cells has been one of the biggest hurdles to practical applications. Even the most stable ones typically don’t last longer than seven years, degrading due to the effects of light and heat. It led many to believe that solar cells made from weakly bonded organic materials simply couldn’t be made to rival the longevity of traditional silicon devices.

But Stephen Forrest’s group at the University of Michigan has put this idea to rest by showing that C70 fullerene-based single junction OPVs can survive the glare of the sun for far longer than any commercial device would require – around 27,000 years. The team extrapolated this number by artificially ageing the cells using heat and intense light.

‘We have shown that organic solar cells aren’t particularly difficult to stabilise – it depends on choice of materials, fabrication processes and device architectures,’ says Forrest. ‘It is now clear that the intrinsic lifetime of OPVs can be sufficient to achieve the practical lifetimes met by conventional, inorganic cells.’

The researchers made thin-film organic solar cells in a series of layers, like a nano-scale multi-layered sandwich, using vapour deposition to precisely control the thickness and purity of each layer. The experimental devices had efficiencies of 6–7% – by comparison commercial silicon solar cells have efficiencies of around 20%. Initial experiments, which simulated the light and heat intensity of the sun using a xenon arc lamp revealed that the cells degraded too slowly to be measured over the course of a year. So the team rigged up a system of white LEDs which could artificially age a fresh set of OPV cells by subjecting them to light intensities that delivered the equivalent of up to 37 suns.

After exposure for more than 68 days, the cells maintained more than 87% of their starting efficiency. The team were able to extrapolate from the results that it would take the equivalent of 27,000 years outdoors for the cells to lose 20% of their original efficiency – the point at which the team deemed the device no longer useful. What’s more, no efficiency loss was observed in cells subjected to nine years’ worth of UV radiation.

‘The extrapolated lifetimes were exceptionally long, particularly compared to all previous reports of device lifetimes. Yet, “short lifetime” as a feature of all organic devices is a myth, as has been proven for [organic LEDs],’ explains Forrest. ‘So while the very long intrinsic lifetime is surprising, it is within reasonably expected values for the best organic devices reported in other application spaces.’

‘The excitement of this paper is that it debunks the common belief that organic materials are unstable and that long-lived organic solar cells are simply not possible,’ says Paul Dastoor, who develops organic solar cells, including a solar paint, at the University of Newcastle, Australia. ‘Indeed, our own work is showing that it is the packaging and encapsulation that is far more critical to obtaining long device lifetimes rather than organic material stability.’

Q Burlingame et al, Nature, 2019, DOI: 10.1038/s41586-019-1544-1


Mice’s facial expressions can reveal a wide range of emotions. A machine learning approach reveals subtle ear, nose and whisker movements

By Laura Sanders

Although it’s tricky for us humans to see, mouse feelings are written all over their furry little faces.

With machine learning tools, researchers reliably spotted mice’s expressions of joy, fear, pain and other basic emotions. The results, published in the April 3 Science, provide a field guide for scientists seeking to understand how emotions such as joy, regret and empathy work in animals other than humans (SN: 11/10/16; SN: 6/9/14; SN: 12/8/11).

Using machine learning to reveal mice’s expressions is “an extraordinarily exciting direction,” says Kay Tye, a neuroscientist at the Salk Institute for Biological Studies in La Jolla, Calif. The findings “lay the foundation for what I expect will be a game changer for neuroscience research on emotional states.”

Neuroscientist Nadine Gogolla of the Max Planck Institute of Neurobiology in Martinsried, Germany, and colleagues gave mice experiences designed to elicit distinct emotions. Sugar water evoked pleasure, a shock to the tail triggered pain, bitter quinine water created disgust, an injection of lithium chloride evoked a nauseated malaise, and a place where shocks previously had been delivered sparked fear. For each setup, high-speed video cameras captured subtle movements in the mice’s ears, noses, whiskers and other parts of the face.

Observers can generally see that something is happening on the mouse’s face, Gogolla says. But translating those subtle clues into emotions is really hard, “especially for an untrained human being,” she says.

Machine learning techniques handle the job beautifully, the researchers found. The methods were able to spot subtle face movements that came with good or bad experiences. For instance, on the face of a mouse drinking sweet water — and presumably happy about it — the ears move forward and fold at the back toward the body, and the nose moves down toward the mouth. A mouse tasting bitter quinine sends its ears straight back, and the nose curls slightly backward, too.

Activity of nerve cells in the mice’s brains also changed with distinct emotions, other analyses showed. These cells reside in the insular cortex, a deeply buried spot known to be involved in human emotions, too.

By prodding these cells to fire signals, the researchers could prompt the mice to display certain facial expressions. These connections among brain activity and facial expressions may lead to insights about the neural basis of emotions, and what goes awry in disorders such as anxiety, the researchers suggest.

Mice’s facial expressions can reveal a wide range of emotions

Plants “talk” to neighbors to ward off pests

Goldenrods that evolved in the presence of herbivores release volatile chemicals that trigger defenses in neighboring plants of their species, even those that are genetically unrelated.

by Ashley Yeager

When a beetle larva bites into the leaf of a goldenrod plant, a perennial herb known for its bright yellow flowers, it gets a mouthful of food to fuel its growth. But the plant’s perspective is rather different. The bite damages the goldenrod (genus: Solidago), causing it to launch molecular defenses against the insect and to emit a concoction of chemicals that change the physiology of goldenrod plants nearby. It’s as if the plants are communicating about the invader.

For researchers studying plants’ responses to herbivory, the reasons for this communication are something of a mystery. “We don’t have a good understanding of why these plants are emitting these cues,” Rick Karban, an entomologist who studies plant communication at the University of California, Davis, tells The Scientist. “We don’t even know if the cues that plants are emitting—that other plants can perceive and respond to—are somewhat intentional,” or just a byproduct of leaf damage.

The notion that plants communicate was controversial until the end of the 20th century. Biologists first argued that trees and plants could “talk” to one another in the 1980s, but data supporting the idea were dismissed by many researchers as statistically sketchy. Over the past few decades, however, the scientific community has revised its opinion. A series of papers have shown that when a plant such as goldenrod is damaged, it releases volatile organic compounds (VOCs) that prompt neighboring plants to mount their own chemical defenses against an impending herbivore attack. Karban says researchers are now focused on why the emitting plant puts out this signal, and whether it derives a benefit from telling those around it that it’s being eaten.

It’s possible that surrounding plants are merely eavesdropping on the signal emitter, which derives no benefit from the situation. Researchers have also proposed two alternative hypotheses that involve a benefit to the emitter. The first—the kin selection hypothesis—states that the plant emitting the signal indirectly benefits thanks to the increased survival of genetically related individuals in its vicinity, even if the plant itself is damaged by herbivory. The second—the mutual benefit hypothesis—posits that the plant emitting the signal directly benefits from communication because the preemptive chemical defenses launched by all its neighbors result in a hostile environment that encourages the herbivorous insect to move away from the area.

Finding evidence to distinguish between these scenarios hasn’t been easy, especially because plant communication is a small field. But a long-running project offers new clues. In 1996, a team at Cornell University started an elaborate experiment on one goldenrod species, S. altissima, regularly spraying rows and rows of the plant with the insecticide fenvalerate, while leaving other rows untreated. After 12 years, the researchers collected plants from each of the rows, brought them to the lab, snipped the stems, and grew clones. Then, the team set up collections of the clones in pots at a nearby farm, let goldenrod beetle larvae munch on some of the plants, and measured the emission of VOCs.

“This research was really mostly curiosity driven,” says Aino Kalske, a postdoctoral researcher in ecology and evolution biology at the University of Turku in Finland and a former graduate student at Cornell who helped with the experiment. She and her colleagues were particularly interested to see if the goldenrod’s chemical messages would evolve differently depending on whether the plants had been treated with insecticide and were protected from insect attacks or had been left untreated and experienced higher levels of herbivory. Differences in signaling between the treated and untreated plants’ descendants might be a small step toward determining which hypothesis about plant communication was correct.

The team found that VOCs emitted by goldenrod plants whose predecessors had been sprayed with the insecticide only induced genetically identical plants to mount preemptive chemical defenses to insect invasion—consistent with the kin selection hypothesis. But VOCs emitted by goldenrod whose predecessors hadn’t been sprayed with the insecticide induced the preemptive defense from all the other goldenrod plants around them, even plants that weren’t their kin—consistent with the mutual benefit hypothesis.

Additionally, the plants exposed to herbivory converged on a shared VOC signal over the course of the study—with all of the goldenrod plants eventually emitting the same chemical signals whether they were genetically identical to the emitter plant or not. Plants treated with insecticide showed no such signal convergence, the researchers reported in Current Biology last September. This sort of convergence on a single chemical signal is thought to benefit plants exposed to herbivory by providing a stronger deterrent against invading insects or a stronger attraction for the herbivores’ natural enemies. Kalske says the study provides the first concrete evidence that plants aren’t merely eavesdropping on one another, and that the emitter derives a benefit from releasing its chemical messages.

“The main value of the paper is the extremely long-lasting experiment needed to assess an evolutionary change in an organism,” Emilio Guerrieri, a researcher at the National Research Council of Italy’s Institute for Sustainable Plant Protection who was not involved in the study, writes in an email to The Scientist. The experiment, he says, “represents a sound demonstration that herbivores shape the VOC emission of a plant.”

Researchers still don’t know much about how the plants actually receive and respond to the VOC cues, Kalske notes, or whether the presence of other types of herbivores, such as mammals, influences similar signal changes. These are questions that the team would still like to answer, she says, not least because of the potential agricultural applications. “Understanding the intricacies of the plant world and plant-plant communication in more detail can potentially help us in plant protection in the agricultural context, if we can learn how to use these volatiles to turn on defenses in crop plants effectively.”


There Are Striking Similarities in The Way Bacteria And Humans Settle Into Colonies


The way oral bacteria sets up shop in our mouths is not unlike how we humans settle into our cities, a new study has found.

There’s a reason bacteria are said to live in ‘colonies’, and the more we learn about how these tiny architects build their communities, the more familiar their behavior seems to us.

A new study following how multiple individual settlers develop into microcolonies has found growth patterns and dynamics that mirror our own urban inclinations.

“We take this ‘satellite-level’ view, following hundreds of bacteria distributed on a surface from their initial colonisation to biofilm formation,” says Hyun Koo from the University of Pennsylvania.

“And what we see is that, remarkably, the spatial and structural features of their growth are analogous to what we see in urbanisation.”

Just as in nature, bacteria in your mouth live in complex structures known as biofilms. In fact, 99.9 percent of prokaryotes live crammed together with millions of other neighbours in one of these settlements.

Biofilms are everywhere, but if they’re on your teeth, we refer to them as plaque. This dense and sticky deposit is hard to remove, thereby protecting resident microbes from environmental assaults, like toothpaste, floss or even antibiotics.

It builds up when several individual settlers develop into microcolonies, but exactly how this happens remains underexplored.

Using the oral bacterium Streptococcus mutans, researchers have shown that microbial cells settle at random and regardless of the surface type. Nevertheless, only a subset of colonisers actually begin clustering, expanding their scope “by amalgamating neighboring bacteria into densely populated microcolonies.”

“We thought that the majority of the individual bacteria would end up growing,” says Koo. “But the actual number was less than 40 percent, with the rest either dying off or being engulfed by the growth of other microcolonies.”

Once the clusters arise, something really curious happens: they begin to interact with one another, growing and organising into densely populated “micron-scale microcolonies that further expand and merge” to form a biofilm superstructure.

This sort of cooperation is interesting, as previous studies have reported bacterial competition in other species, especially when there was a scarcity of nutrients.

In this case, the nutrients only impacted the actual forming of the colonies. After that, “the individual microcolonies (distant or in close proximity) continued to grow without disruption until merging with each other, and the merged structures behaved and grew like a single new harmonised community,” the researchers write.

Only when more antagonistic foreign species were introduced did it affect that seemingly peaceful unit, and the growth of the microcolonies was lowered.

“These communities (microcolonies) can expand and merge with each other in a collaborative fashion, without competition between adjacent communities,” the authors conclude.

It’s the type of growth that indicates “communal behavior between microorganisms”, and it looks similar to human urbanisation, where some settlers stay static, while others grow into villages that further expand into densely-populated microcolonies or cities, which then merge into microbial megacities.

Of course, there are limits to this idea of bacterial urbanisation. The authors aren’t saying microbes build traffic signs, roads and supply lines, but the general idea is the same and it can not only help us tackle infections better, it might also help us build more sustainably.

“It’s a useful analogy, but it should be taken with a grain of salt,” Koo says. “We’re not saying these bacteria are anthropomorphic. But taking this perspective of biofilm growth gives us a multiscale, multidimensional picture of how they grow that we’ve not seen before.”

The study was published in Nature Communications.


Discovery of 550 million year old worm-like creature as the first ancestor on the human and animal family tree

Evidence of a worm-like creature about the size of a grain of rice has been uncovered in South Australia, and researchers believe it is the oldest ancestor on the family tree that includes humans and most animals.

The creature lived 555 million years ago.

It’s considered to be the earliest bilaterian. Bilaterians are organisms with a front, back, two openings on either end and a gut that connects them. They were an evolutionary step forward for early life on Earth.

Some of the oldest life on Earth, including those sponges and algal mats, is referred to as the Ediacaran Biota. This group is based on the earliest fossils ever discovered, providing evidence of complex, multicellular organisms.

But those aren’t directly related to animals living today. And researchers have been trying to find fossilized evidence of the common ancestor of most animals.

Developing bilaterian body structure and organization successfully allowed life to move in specific, purposeful directions. This includes everything from worms and dinosaurs to amphibians and humans.

But for our common ancestor, they knew that fossils of the tiny, simple creatures they imagined would be nearly impossible to find because of its size and soft body.

Burrows were found in stone that belonged to a tiny creature who lived billions of years ago.

Then, they turned to fossilized burrows, dated to the Ediacaran Period some 555 million years ago, found in Nilpena, South Australia. For 15 years, scientists knew they were created by bilaterians. But there was no evidence of what made the burrows and lived in them.

That is, until researchers decided to take a closer look at the burrows. Geology professor Mary Droser and doctoral graduate Scott Evans, both from the University of California, Riverside, spotted impressions shaped like ovals near the burrows.

A 3-D laser scan revealed the impressions contained evidence of a body shaped and sized like a rice grain, with a noticeable head, tail and even V-shaped grooves suggesting muscles.

Contractions of the muscles would have enabled the creature to move and create the burrows, like the way a worm moves. Patterns of displaced sediment and signs of feeding led the researchers to determine that it had a mouth, gut and posterior opening.

And the size of the creature matched with the size of the burrows they found.

The study published Monday in the journal Proceedings of the National Academy of Sciences.
“We thought these animals should have existed during this interval, but always understood they would be difficult to recognize,” Evans said. “Once we had the 3D scans, we knew that we had made an important discovery.”

A 3D scan revealed the shape and characteristics of the creature that made the burrows.

The researchers involved in the study named the creature Ikaria wariootia. The first name translates to “meeting place” in the Adnyamathanha language. Adnyamathanha is the name of contemporary Indigenous Australian people that live in the area where the fossil was found. And the name of the species is a variation on a waterway in the area, called Warioota Creek.

The fossilized burrows were found beneath the impressions of other fossils in the lowest layer of Nilpena’s Ediacaran Period deposits. During its lifetime, Ikaria searched for the organic matter it fed on by burrowing through layers of sand on the ocean floor. Given that the burrows track through sand that was oxygenated, rather than toxic spots, suggest the creature had basic senses.

“Burrows of Ikaria occur lower than anything else. It’s the oldest fossil we get with this type of complexity,” Droser said. “We knew that we also had lots of little things and thought these might have been the early bilaterians that we were looking for.”

Droser also explained that other, larger fossils belonging to other creatures they found in the past were likely evolutionary dead-ends.

“This is what evolutionary biologists predicted,” Droser said. “It’s really exciting that what we have found lines up so neatly with their prediction.”