Posts Tagged ‘research’

FIGMMJV2X4I6RLNYAEJFIFWBAI
High school students in 1960 take the Project Talent test, the largest survey of American teenagers ever done; it is now being used for research into dementia. (American Institutes for Research)

By Tara Bahrampour

In 1960, Joan Levin, 15, took a test that turned out to be the largest survey of American teenagers ever conducted. It took two-and-a-half days to administer and included 440,000 students from 1,353 public, private and parochial high schools across the country — including Parkville Senior High School in Parkville, Md., where she was a student.

“We knew at the time that they were going to follow up for a long time,” Levin said — but she thought that meant about 20 years.

Fifty-eight years later, the answers she and her peers gave are still being used by researchers — most recently in the fight against Alzheimer’s disease. A study released this month found that subjects who did well on test questions as teenagers had a lower incidence of Alzheimer’s and related dementias in their 60s and 70s than those who scored poorly.

Known as Project Talent, the test was funded by the U.S. government, which had been concerned, given the Soviet Union’s then-recent successful Sputnik launch, that Americans were falling behind in the space race.

Students answered questions about academics and general knowledge, as well as their home lives, health, aspirations and personality traits. The test was intended to identify students with aptitudes for science and engineering. Test-takers included future rock stars Janis Joplin, then a senior at Thomas Jefferson High School in Port Arthur, Tex., and Jim Morrison, then a junior at George Washington High School in Alexandria, Va.

In recent years, researchers have used Project Talent data for follow-up studies, including one published Sept. 7 in the Journal of the American Medical Association. Conducted by researchers at the Washington-based American Institutes for Research (AIR), the organization that originally administered the test, it compared results for more than 85,000 test-takers with their 2012-2013 Medicare claims and expenditures data, and found that warning signs for dementia may be discernible as early as adolescence.

The study looked at how students scored on 17 areas of cognitive ability such as language, abstract reasoning, math, clerical skills, and visual and spatial prowess, and found that people with lower scores as teenagers were more prone to getting Alzheimer’s and related dementias in their 60s and early 70s.

Specifically, those with lower mechanical reasoning and memory for words as teens had a higher likelihood of developing dementia in later life: Men in the lower-scoring half were 17 percent more likely, while women with lower scores were 16 percent more likely. Worse performance on other components of the test also increased the risk for later-life dementia.

An estimated 5.7 million Americans have Alzheimer’s disease, and in the absence of scientific breakthroughs to curb the disease, the Alzheimer’s Association projects that number could reach 14 million by 2050, with the cost of care topping $1 trillion per year.

The 1960 test could have the potential to be like the groundbreaking Framingham study, a decades-long study of men in Massachusetts that led to reductions in heart disease in the 1970s, ’80s and ’90s, said Susan Lapham, director of Project Talent and a co-author of the JAMA study.

“If Project Talent can be for dementia what the Framingham study was for heart disease, it will make a difference in public health,” she said. “It indicates that we should be designing interventions for kids in high school and maybe even earlier to maybe keep their brains active from a young age.”

This might include testing children, identifying those with lower scores and “getting them into a program to make sure they’re not missing out and maybe putting themselves at risk,” she said.

For years, little was done with the Project Talent data because the participants could not be found. A proposal in the 1980s to try to find them failed because, in that pre-Internet age, the task seemed too daunting.

In 2009, as the students’ 50th high school reunions were coming up, researchers decided to use the gatherings as an occasion to contact many of them. (About a quarter have died.) They were then able to use the test data to study things such as the effects of diabetes and personality type on later-life health.

But when contacted, the participants were most interested in dementia, Lapham said. “They wanted that to be studied more than any other topic,” she said. “They said, ‘The thing I fear most is dementia.’ ”

While students were supposed to have received their results soon after taking the test, some students said they did not remember getting them.

Receiving her results recently was interesting in hindsight, said Levin, a retired human-resources director who is now 73 and living in Cockeysville, Md. Most of her scores were over 75 percent, with very high marks in vocabulary, abstract reasoning and verbal memory, and lower marks in table reading and clerical tasks.

Low scores do not mean a person will get dementia; the correlation is merely associated with a higher risk. But even if her scores had been lower, Levin said she would want to know. “I’m kind of a planner, and I look ahead,” she said. “I’d want my daughter and her family to maybe have an idea of what to expect.”

Karen Altpeter, 75, of Prescott, Wis., said she would also probably want to know about her risk, because her mother and grandmother had Alzheimer’s. She liked the idea that the answers she had given as a teen could help science.

“If there’s any opportunity I can have to make a difference just by taking a test and answering some questions, I’ll do it,” she said. “I want the opportunity to make things better for people.”

Earlier studies had suggested a relationship between cognitive abilities in youth and dementia in later life, including one that followed 800 nuns earlier in the 20th century and found that the complexity of sentences they used in writing personal essays at 21 correlated with their dementia risk in old age.

But that study included only women and no minorities. Project Talent’s subjects reflected the nation’s demographic mix in 1960.

Today, however, the country is more diverse. The number of minorities 65 and older is projected to grow faster than the general population, and by 2060 there will be about 3.2 million Hispanics and 2.2 million African Americans with Alzheimer’s disease and related dementias, according to a study by the Centers for Disease Control and Prevention published this week. African Americans and Hispanics have a higher prevalence of Alzheimer’s and related diseases than non-Hispanic whites.

A follow-up study underway of a smaller sample of the Project Talent pool — 22,500 people — will be weighted to reflect today’s population mix and will dig more deeply into age-related brain and cognitive changes over time.

It will examine the long-term impact of school quality and school segregation on brain health, and the impact of adolescent socioeconomic disadvantage on cognitive and psychosocial resilience, with a special focus on the experiences of participants of color.

That study includes an on-paper survey of demographics, family and marriage history, residential history, educational attainment and health status; an online survey of health, mental health and quality of life; and a detailed cognitive assessment by phone of things such as memory for words and counting backward.

Researchers will also evaluate school quality to determine whether there are racial or ethnic differences in the benefits of attending higher quality schools, and explore more deeply why some people develop dementia and some do not.

The follow-up, slated to be completed next year, is funded by the National Institute on Aging, part of the National Institutes of Health, and conducted by AIR in conjunction with researchers from Columbia University Medical Center and the University of Southern California.

Cliff Jacobs, 75, of Arlington, Va., who took the Project Talent test as a high school junior in Tenafly, N.J., doesn’t remember hearing about any results. Then, a few months ago, researchers conducting the follow-up study contacted him, tested his cognitive abilities and asked about his life history.

“They delved into my issues growing up — did my parents smoke, and was I exposed to any secondhand smoke? Yeah, my parents both smoked, and I didn’t even think it was something to consider,” he said.

A retired geoscientist for the National Science Foundation, Jacobs said he would be interested in learning if he is at risk for dementia.

“The statistical correlation is not one that will necessarily apply to you, but they can give you some probabilities,” he said. “I guess basic human nature would be, ‘Yeah, you’d probably want to know.’ ”

Try these 12 sample questions from the test.


Can’t see the Quiz? Click Here.

1

In the Bible story, Samson knew he would lose his strength if

his hair were cut.

he fell in love.

he left Jerusalem.

he spoke with a Philistine.

he went to war.

2

Chartreuse is a mixture of

green and blue.

yellow and orange.

yellow and green.

orange and brown.

red and orange.

3

The above is usually called a

fly.

spoon.

spinner.

plug.

streamer.

4

High pointed arches are used chiefly in

Roman architecture.

Greek architecture.

Gothic architecture.

Renaissance architecture.

modern architecture.

5

If a camper sees a garter snake, he should

leave it alone.

pin its head down with a forked stick.

hit it with a rock.

climb the nearest tree.

stand still until it leaves.

6

Tartar sauce is most often served with

tossed salad.

ice cream.

fish.

barbecued beef.

chow mein.

7

Suppose that after the post office is closed, someone finds he urgently needs stamps. He should probably try getting them

in a drug store.

from a stamp collector.

by phoning the postmaster’s home.

in a department store.

in a gas station.

8

In a suspension bridge, the road bed is supported by

pontoons.

pilings.

arches.

cables.

cantilevers.

9

Which of these guns has the largest bore?

12 ga.

.22 cal.

.44 cal.

16 ga.

20 ga.

10

A boy takes a girl to a movie and they find a pair of seats on a side aisle. Usually the girl should take the seat

on the left.

on the right.

nearest the aisle.

furthest from the aisle.

nearest the center of the theater.

11

About when did Leonardo de Vinci live?

1st century

5th century

10th century

15th century

20th century

12

Locks were built into the Panama Canal because

the Atlantic Ocean is higher than the Pacific.

the Pacific Ocean is higher than the Atlantic.

Panama is above sea level.

the canal is narrow.

the canal is wide.

Advertisements

webp-net-resizeimage-14--x

by SUKANYA CHARUCHANDRA

Previous research has shown that the gut-brain connection, which refers to signaling between the digestive and the central nervous systems, is based on the transport of hormones, but a study published today (September 21) in Science suggests there may be a more direct link—the vagus nerve.

This research presents “a new set of pathways that use gut cells to rapidly communicate with . . . the brain stem,” Daniel Drucker, who studies gut disorders at the Lunenfeld-Tanenbaum Research Institute in Toronto, Canada, and was not involved with the project, tells Science.

Building on an earlier study in which the team found that gut cells had synapses, the researchers injected a rabies virus, expressing green fluorescence, into the stomachs of mice and watched it travel speedily from the intestines to the rodents’ brainstems.

When they grew sensory gut cells together with neurons from the vagus nerve, the neurons moved across the dish to form synapses with the gut cells and began electrically coupling with them. Adding sugar to the dish sped up the rate of signaling between the gut and brain cells, a finding that suggests glutamate, a neurotransmitter involved in sensing taste, may be key to the process. Blocking glutamate secretion in gut cells brought these signals to a grinding halt.

“We think these findings are going to be the biological basis of a new sense,” coauthor Diego Bohórquez, an assistant professor of medicine at Duke University School of Medicine, says in a statement. “One that serves as the entry point for how the brain knows when the stomach is full of food and calories. It brings legitimacy to idea of the ‘gut feeling’ as a sixth sense.”

https://www.the-scientist.com/news-opinion/the-gut-of-mice-communicates-with-the-brain-through-the-vagus-nerve-64846?utm_campaign=TS_DAILY%20NEWSLETTER_2018&utm_source=hs_email&utm_medium=email&utm_content=66141129&_hsenc=p2ANqtz–EaFM3BB6i_l04LL2zbvjlEHCWVwrSrks2D9Aksml-wGa9f88gfOwPhtiPCXEMJRqzu6WG53_vzEvHht0oAGylLgMANQ&_hsmi=66141129

mice-x

by SUKANYA CHARUCHANDRA

The protein Bmal1, which helps regulate the body’s internal clock, is found in especially high levels in the brain and in skeletal muscles. Mice completely deficient in Bmal1 were known to suffer from sleep impairments, but the specifics at play weren’t clear. At the University of California, Los Angeles, Ketema Paul and colleagues looked to these mice for clues about the role Bmal1 plays in sleep regulation.

MUSCLE PLAY
When Paul’s team restored levels of the Bmal1 protein in the mice’s brains, their ability to rebound from a night of bad sleep remained poor. However, turning on production in skeletal muscles alone enabled mice to sleep longer and more deeply to recover after sleep loss.

SWEET DREAMS
For decades, scientists have thought sleep was controlled purely by the brain. But the new study indicates the ability to catch up on one’s sleep after a bout of sleeplessness is locked away in skeletal muscles, not the brain—at least for mice. “I think it’s a real paradigm shift for how we think about sleep,” says John Hogenesch, a chronobiologist at Cincinnati Children’s Hospital Medical Center who discovered the Bmal1 gene but was not involved in this study.

TARGET LOCKED
Paul’s group also found that having too much of the Bmal1 protein in their muscles not only made mice vigilant but also invulnerable to the effects of sleep loss, so that they remained alert even when sleep-deprived and slept fewer hours to regain lost sleep. “To me, that presents a potential target where you could treat sleep disorders,” says Paul, noting that an inability to recover from sleep loss can make us more susceptible to diseases.

The paper
J.C. Ehlen et al., “Bmal1 function in skeletal muscle regulates sleep,” eLife, 6:e26557, 2017.

https://www.the-scientist.com/the-literature/muscles-hold-a-key-to-sleep-recovery-64685?utm_campaign=TS_DAILY%20NEWSLETTER_2018&utm_source=hs_email&utm_medium=email&utm_content=66141129&_hsenc=p2ANqtz–EaFM3BB6i_l04LL2zbvjlEHCWVwrSrks2D9Aksml-wGa9f88gfOwPhtiPCXEMJRqzu6WG53_vzEvHht0oAGylLgMANQ&_hsmi=66141129

zombie-neurons-identified-in-alzheimers-brains-309765
Senescent cells (represented here in green) no longer function but can broadcast inflammatory signals to the cells around them. These cells are implicated in a number of age-related diseases. Credit: The Mayo Clinic

0Q9B6965
Darren Baker, Ph.D., a Mayo Clinic molecular biologist and senior author of the paper, and first author Tyler Bussian, a Mayo Clinic Graduate School of Biomedical Sciences student.

Zombie cells are the ones that can’t die but are equally unable to perform the functions of a normal cell. These zombie, or senescent, cells are implicated in a number of age-related diseases. And with a new letter in Nature, Mayo Clinic researchers have expanded that list.

In a mouse model of brain disease, scientists report that senescent cells accumulate in certain brain cells prior to cognitive loss. By preventing the accumulation of these cells, they were able to diminish tau protein aggregation, neuronal death and memory loss.

“Senescent cells are known to accumulate with advancing natural age and at sites related to diseases of aging, including osteoarthritis; atherosclerosis; and neurodegenerative diseases, such as Alzheimer’s and Parkinson’s,” says Darren Baker, Ph.D., a Mayo Clinic molecular biologist and senior author of the paper. “In prior studies, we have found that elimination of senescent cells from naturally aged mice extends their healthy life span.”

In the current study, the team used a model that imitates aspects of Alzheimer’s disease.

“We used a mouse model that produces sticky, cobweb like tangles of tau protein in neurons and has genetic modifications to allow for senescent cell elimination,” explains first author Tyler Bussian, a Mayo Clinic Graduate School of Biomedical Sciences student who is part of Dr. Baker’s lab. “When senescent cells were removed, we found that the diseased animals retained the ability to form memories, eliminated signs of inflammation, did not develop neurofibrillary tangles, and had maintained normal brain mass.” They also report that pharmacological intervention to remove senescent cells modulated the clumping of tau proteins.

Also, the team was able to identify the specific type of cell that became senescent, says Dr. Baker.

“Two different brain cell types called ‘microglia’ and ‘astrocytes’ were found to be senescent when we looked at brain tissue under the microscope,” says Bussian. “These cells are important supporters of neuronal health and signaling, so it makes sense that senescence in either would negatively impact neuron health.”

The finding was somewhat surprising, explains Dr. Baker, because at the time their research started, a causal link between senescent cells and neurodegenerative disease had not been established.

“We had no idea whether senescent cells actively contributed to disease pathology in the brain, and to find that it’s the astrocytes and microglia that are prone to senescence is somewhat of a surprise, as well,” says Dr. Baker.

In terms of future work, Dr. Baker explains that this research lays out the best-case scenario, where prevention of damage to the brain avoided the disease state. “Clearly, this same approach cannot be applied clinically, so we are starting to treat animals after disease establishment and working on new models to examine the specific molecular alterations that occur in the affected cells,” says Dr. Baker.

In addition to Dr. Baker and Bussian, the other authors are Asef Aziz, a medical student formerly at Mayo Clinic; Charlton Meyer, Mayo Clinic; Barbara Swenson, Ph.D., Mayo Clinic; and Jan van Deursen, Ph.D., Mayo Clinic. Dr. van Deursen is the Vita Valley Professor of Cellular Senescence. Drs. Baker and van Deursen are inventors on patents licensed to Unity Biotechnology by Mayo Clinic, and Dr. van Deursen is a co-founder of Unity Biotechnology.

Funding for this research was provided by the Ellison Medical Foundation, the Glenn Foundation for Medical Research, the National Institutes of Health, the Mayo Clinic Children’s Research Center, and the Alzheimer’s Disease Research Center of Mayo Clinic.

https://newsnetwork.mayoclinic.org/discussion/senescent-cells-found-in-brains-of-mice-prior-to-cognitive-loss/

Researchers led by Northwestern Engineering’s Luis Amaral sifted through data from more than 1.5 million questionnaire respondents to find at least four distinct clusters of personality types exist — average, reserved, self-centered, and role model — challenging existing paradigms in psychology.

“People have tried to classify personality types since Hippocrates’s time, but previous scientific literature has found that to be nonsense,”said co-author William Revelle, professor of psychology at Northwestern University’s Weinberg College of Arts and Sciences.

“Now, these data show there are higher densities of certain personality types,” said Revelle, who specializes in personality measurement, theory, and research.

The new study appears in Nature Human Behaviour. The findings potentially could be of interest to hiring managers and mental healthcare providers.

Initially, Revelle was skeptical of the study’s premise. The concept of personality types remains controversial in psychology, with hard scientific proof difficult to find. Previous attempts based on small research groups created results that often were not replicable.

“Personality types only existed in self-help literature and did not have a place in scientific journals,” said Amaral, Erastus Otis Haven Professor of Chemical and Biological Engineering at the McCormick School of Engineering. “Now, we think this will change because of this study.”

The new research combined an alternative computational approach with data from four questionnaires, attracting more than 1.5 million respondents from around the world. The questionnaires, developed by the research community over the decades, have between 44 and 300 questions. People voluntarily take the online quizzes, attracted by the opportunity to receive feedback about their own personality.

These data are now being made available to other researchers for independent analyses.

“A study with a dataset this large would not have been possible before the web,” Amaral said. “Previously, researchers would recruit undergrads on campus and maybe get a few hundred people. Now, we have all these online resources available, and data is being shared.”

Average

Average people are high in neuroticism and extraversion, while low in openness. “I would expect that the typical person would be in this cluster,” said Martin Gerlach, a postdoctoral fellow in Amaral’s lab and the paper’s first author. Females are more likely than males to fall into the Average type.

Reserved

The Reserved type is emotionally stable, but not open or neurotic. They are not particularly extraverted but are somewhat agreeable and conscientious.

Role Models

Role Models score low in neuroticism and high in all the other traits. The likelihood that someone is a role model increases dramatically with age. “These are people who are dependable and open to new ideas,” Amaral said. “These are good people to be in charge of things. In fact, life is easier if you have more dealings with role models.” More women than men are likely to be role models.

Self-Centered

Self-Centered people score very high in extraversion and below average in openness, agreeableness and conscientiousness. “These are people you don’t want to hang out with,” Revelle said. There is a very dramatic decrease in the number of self-centered types as people age, both with women and men.

The group’s first attempt to sort the data used traditional clustering algorithms, but that yielded inaccurate results, Amaral said.

“At first, they came to me with 16 personality types, and there’s enough literature that I’m aware of that says that’s ridiculous,” Revelle said. “I believed there were no types at all.”

He challenged Amaral and Gerlach to refine their data.

“Machine learning and data science are promising but can be seen as a little bit of a religion,” Amaral said. “You still need to test your results. We developed a new method to guide people to solve the clustering problem to test the findings.”

Their algorithm first searched for many clusters using traditional clustering methods, but then winnowed them down by imposing additional constraints. This procedure revealed the four groups they reported.

“The data came back, and they kept coming up with the same four clusters of higher density and at higher densities than you’d expect by chance, and you can show by replication that this is statistically unlikely,” Revelle said.

“I like data, and I believe these results,” he added. “The methodology is the main part of the paper’s contribution to science.”

To be sure the new clusters of types were accurate, the researchers used a notoriously self-centered group—teenaged boys—to validate their information.

“We know teen boys behave in self-centered ways,” Amaral said. “If the data were correct and sifted for demographics, they would they turn out to be the biggest cluster of people.”

Indeed, young males are overrepresented in the Self-Centered group, while females over 15 years old are vastly underrepresented.

Along with serving as a tool that can help mental health service providers assess for personality types with extreme traits, Amaral said the study’s results could be helpful for hiring managers looking to insure a potential candidate is a good fit or for people who are dating and looking for an appropriate partner.

And good news for parents of teenagers everywhere: As people mature, their personality types often shift. For instance, older people tend to be less neurotic yet more conscientious and agreeable than those under 20 years old.

“When we look at large groups of people, it’s clear there are trends, that some people may be changing some of these characteristics over time,” Amaral said. “This could be a subject of future research.”

This article has been republished from materials provided by Northwestern University. Note: material may have been edited for length and content. For further information, please contact the cited source.

Reference:

Martin Gerlach, Beatrice Farb, William Revelle, Luís A. Nunes Amaral. A robust data-driven approach identifies four personality types across four large data sets. Nature Human Behaviour, 2018; DOI: 10.1038/s41562-018-0419-z

The discovery sheds new light on the origins of this most common cause of dementia, a hallmark of which is the buildup of tangled tau protein filaments in the brain.

The finding could also lead to new treatments for Alzheimer’s and other diseases that progressively destroy brain tissue, conclude the researchers in a paper about their work that now features in the journal Neuron.

Scientists from Massachusetts General Hospital (MGH) in Charlestown and the Johns Hopkins School of Medicine in Baltimore, MD, led the study, which set out to investigate how tau protein might contribute to brain cell damage.

Alzheimer’s disease does not go away and gets worse over time. It is the sixth most common cause of death in adults in the United States, where an estimated 5.7 million people have the disease.

Exact causes of Alzheimer’s still unknown

Exactly what causes Alzheimer’s and other forms of dementia is still a mystery to science. Evidence suggests that a combination of environment, genes, and lifestyle is involved, with different factors having different amounts of influence in different people.

Most cases of Alzheimer’s do not show symptoms until people are in their 60s and older. The risk of getting the disease rises rapidly with age after this.

Brain studies of people with the disease — together with postmortem analyses of brain tissue — have revealed much about how Alzheimer’s changes and harms the brain.

“Age-related changes” include: inflammation; shrinkage in some brain regions; creation of unstable, short-lived molecules known as free radicals; and disruption of cellular energy production.

The brain of a person with Alzheimer’s disease also has two distinguishing features: plaques of amyloid protein that form between cells, and tangles of tau protein that form inside cells. The recent study concerns the latter.

Changes to tau behavior

Brain cells, or neurons, have internal structures known as microtubules that support the cell and its function. They are highly active cell components that help carry substances from the body of the cell out to the parts that connect it to other cells.

In healthy brain cells, tau protein normally “binds to and stabilizes” the microtubules. Tau behaves differently, however, in Alzheimer’s disease.

Changes in brain chemistry make tau protein molecules come away from the microtubules and stick to each other instead.

Eventually, the detached tau molecules form long filaments, or neurofibrillary tangles, that disrupt the brain cell’s ability to communicate with other cells.

The new study introduces the possibility that, in Alzheimer’s disease, tau disrupts yet another mechanism that involves communication between the nucleus of the brain cell and its body.

Communication with cell nucleus

The cell nucleus communicates with the rest of the cell using structures called nuclear pores, which comprise more than 400 different proteins and control the movement of molecules.

Studies on the causes of amyotrophic lateral sclerosis, frontotemporal, and other types of dementia have suggested that flaws in these nuclear pores are involved somehow.

The recent study reveals that animal and human cells with Alzheimer’s disease have faulty nuclear pores, and that the fault is linked to tau accumulation in the brain cell.

“Under disease conditions,” explains co-senior study author Bradley T. Hyman, the director of the Alzheimer’s Unit at MGH, “it appears that tau interacts with the nuclear pore and changes its properties.”

He and his colleagues discovered that the presence of tau disrupts the orderly structure of nuclear pores containing the major structural protein Nup98. In Alzheimer’s disease cells, there were fewer of these pores and those that were there tended to be stuck to each other.

‘Mislocalized’ Nup98
They also observed another curious change involving Nup98 inside Alzheimer’s disease brain cells. In cells with aggregated tau, the Nup98 was “mislocalized” instead of staying in the nuclear pore.

They revealed that this feature was more exaggerated in brain tissue of people who had died with more extreme forms of Alzheimer’s disease.

Finally, when they added human tau to living cultures of rodent brain cells, the researchers found that it caused mislocalization of Nup98 in the cell body and disrupted the transport of molecules into the nucleus.

This was evidence of a “functional link” between the presence of tau protein and damage to the nuclear transport mechanism.

The authors note, however, that it is not clear whether the Nup98-tau interaction uncovered in the study just occurs because of disease or whether it is a normal mechanism that behaves in an extreme fashion under disease conditions.

They conclude:

“Taken together, our data provide an unconventional mechanism for tau-induced neurodegeneration.”

https://www.medicalnewstoday.com/articles/322991.php

anewmapofthe
A 3-D rendering of the serotonin system in the left hemisphere of the mouse brain reveals two groups of serotonin neurons in the dorsal raphe that project to either cortical regions (blue) or subcortical regions (green) while rarely crossing into the other’s domain.

As Liqun Luo was writing his introductory textbook on neuroscience in 2012, he found himself in a quandary. He needed to include a section about a vital system in the brain controlled by the chemical messenger serotonin, which has been implicated in everything from mood to movement regulation. But the research was still far from clear on what effect serotonin has on the mammalian brain.

“Scientists were reporting divergent findings,” said Luo, who is the Ann and Bill Swindells Professor in the School of Humanities and Sciences at Stanford University. “Some found that serotonin promotes pleasure. Another group said that it increases anxiety while suppressing locomotion, while others argued the opposite.”

Fast forward six years, and Luo’s team thinks it has reconciled those earlier confounding results. Using neuroanatomical methods that they invented, his group showed that the serotonin system is actually composed of at least two, and likely more, parallel subsystems that work in concert to affect the brain in different, and sometimes opposing, ways. For instance, one subsystem promotes anxiety, whereas the other promotes active coping in the face of challenges.

“The field’s understanding of the serotonin system was like the story of the blind men touching the elephant,” Luo said. “Scientists were discovering distinct functions of serotonin in the brain and attributing them to a monolithic serotonin system, which at least partly accounts for the controversy about what serotonin actually does. This study allows us to see different parts of the elephant at the same time.”

The findings, published online on August 23 in the journal Cell, could have implications for the treatment of depression and anxiety, which involves prescribing drugs such as Prozac that target the serotonin system – so-called SSRIs (selective serotonin reuptake inhibitors). However, these drugs often trigger a host of side effects, some of which are so intolerable that patients stop taking them.

“If we can target the relevant pathways of the serotonin system individually, then we may be able to eliminate the unwanted side effects and treat only the disorder,” said study first author Jing Ren, a postdoctoral fellow in Luo’s lab.

Organized projections of neurons

The Stanford scientists focused on a region of the brainstem known as the dorsal raphe, which contains the largest single concentration in the mammalian brain of neurons that all transmit signals by releasing serotonin (about 9,000).

The nerve fibers, or axons, of these dorsal raphe neurons send out a sprawling network of connections to many critical forebrain areas that carry out a host of functions, including thinking, memory, and the regulation of moods and bodily functions. By injecting viruses that infect serotonin axons in these regions, Ren and her colleagues were able to trace the connections back to their origin neurons in the dorsal raphe.

This allowed them to create a visual map of projections between the dense concentration of serotonin-releasing neurons in the brainstem to the various regions of the forebrain that they influence. The map revealed two distinct groups of serotonin-releasing neurons in the dorsal raphe, which connected to cortical and subcortical regions in the brain.

“Serotonin neurons in the dorsal raphe project to a bunch of places throughout the brain, but those bunches of places are organized,” Luo said. “That wasn’t known before.”

Two parts of the elephant

In a series of behavioral tests, the scientists also showed that serotonin neurons from the two groups can respond differently to stimuli. For example, neurons in both groups fired in response to mice receiving rewards like sips of sugar water but they showed opposite responses to punishments like mild foot shocks.

“We now understand why some scientists thought serotonin neurons are activated by punishment, while others thought it was inhibited by punishment. Both are correct – it just depends on which subtype you’re looking at,” Luo said.

What’s more, the group found that the serotonin neurons themselves were more complex than originally thought. Rather than just transmitting messages with serotonin, the cortical-projecting neurons also released a chemical messenger called glutamate – making them one of the few known examples of neurons in the brain that release two different chemicals.

“It raises the question of whether we should even be calling these serotonin neurons because neurons are named after the neurotransmitters they release,” Ren said.

Taken together, these findings indicate that the brain’s serotonin system is not made up of a homogenous population of neurons but rather many subpopulations acting in concert. Luo’s team has identified two groups, but there could be many others.

In fact, Robert Malenka, a professor and associate chair of psychiatry and behavioral sciences at Stanford’s School of Medicine, and his team recently discovered a group of serotonin neurons in the dorsal raphe that project to the nucleus accumbens, the part of the brain that promotes social behaviors.

“The two groups that we found don’t send axons to the nucleus accumbens, so this is clearly a third group,” Luo said. “We identified two parts of the elephant, but there are more parts to discover.”

https://medicalxpress.com/news/2018-08-brain-serotonin.html