Posts Tagged ‘biology’


A group of independent biologists say they plan to copy a costly gene therapy. Are they medicine’s Robin Hood or a threat to safety?

by Alex Pearlman

Citing the tremendous cost of new drugs, an international group of biohackers say they are creating a knock-off of a million-dollar gene therapy.

The drug being copied is Glybera, a gene therapy that was the world’s most expensive drug when it came on the market in Europe in 2015 with a $1 million per treatment price tag. Glybera was the first gene therapy ever approved to treat an inherited disease.

Now a band of independent and amateur biologists say they have engineered a prototype of a simpler, low-cost version of Glybera, and they plan to call on university and corporate scientists to help them check, improve, and test it on animals.

The group says it will start sharing the materials and describe their activities this weekend at Biohack the Planet, a conference in Las Vegas that hosts citizen scientists, journalists, and researchers for two days of presentations on body implants, biosafety, and hallucinogens.

“This was developed in a shed in Mississippi, a warehouse in Florida, a bedroom in Indiana, and on a computer in Austria,” says Gabriel Licina, a biohacker based in South Bend, Indiana. He says the prototype gene therapy cost less than $7,000 to create.

Experts briefed on the biohacking project were divided, with some calling it misguided and unlikely to work. Others say the excessive cost of genetic treatments has left patients without options and created an incentive to pirate genetic breakthroughs.

“It’s a fairly big deal to see biohackers turning their focus to gene therapies because the potential consequences can be quite large,” said Rachel Sachs, an associate professor of law at Washington University in St. Louis and an expert on drug pricing. “They may see themselves as serving the interests of the patient community.”

This year the Swiss pharmaceutical firm Novartis introduced another gene therapy, Zolgesma, for spinal muscular atrophy, with a price of $2.1 million. Because of the cost, some parents have struggled to obtain it for their children and the treatment is unlikely to be made available in most of the world.

Disrupting the narrative

The gene therapy that the biohackers say they are copying, Glybera, was approved for people with an ultra-rare blood disease called lipoprotein lipase deficiency. But it didn’t prove cost-effective and was pulled from the market in 2017 by its manufacturer, UniQure. To date, only one insurer, in Germany, is known to have paid for the treatment.

Andreas Stürmer, a biotechnologist and environmental engineer who is based in Linz, Austria, says after the idea of reverse engineering the treatment occurred to him he brought the concept to Licina. Their collaboration took place through Facebook messages and Skype calls, and included help from David Ishee, a biohacker in Mississippi.

In another recent example of copy-cat gene therapy, a biohacker in Florida in 2018 produced and ate an oral gene therapy for lactose intolerance using a 20-year-old scientific paper as a recipe.

“It’s about disrupting the narrative,” says Licina, also the cofounder of SciHouse, a community biotechnology lab in Indiana. “It was like, ‘Well, why not?”

One reason not to is that copying and selling the drug could infringe on UniQure’s intellectual property. Tom Malone, a spokesperson for UniQure, says the company had not been informed of the biohacking attempt. He says it still owns a patent on the drug but it does not believe there is strong demand for the treatment. “To that end, a “knock off” version of Glybera would likely face significant regulatory and commercial hurdles,” says Malone.

Also, the US Food and Drug Administration has said it is illegal to sell do-it-yourself gene therapy supplies. Still, some biohackers feel confident grabbing information from published papers, even if some of it has been patented. “This thing is protected 10 different ways,” says Ishee. “I don’t care. Because I’m not selling it.”

Get the job done

To make their knock-off, the biohackers checked the original Glybera papers for the information about the genetic sequence of the gene that patients require corrected copies of. They then placed an order with a gene synthesis company for a copy of the DNA, which was added to a circular genetic construct called a “minicircle.” When added to a cell, the mincircle will begin manufacturing small amounts of the lipoprotein lipase enzyme.

That is an important difference from the original Glybera, which employed an injection of viruses into the leg muscle to deliver the gene. Viral “delivery” is a complex undertaking but is the most commonly used strategy in gene therapy. The biohackers don’t have access to viruses because of their high cost, but say minicircles can potentially be injected, too.

Robert Kotin, an expert in gene therapy production, calls the minicircle technology controversial and says it has shown contradictory results. While minicircles, unlike viruses, could possibly be readministered time and again, they are not as efficient in getting cells to follow genetic instructions.

“It’s not the same [but] it can get the job done. It’s just less efficient,” says Ishee of the minicircles, which are based on his design. He thinks they could be injected over a period of half a year. “It’s like if you wanted to dig a swimming pool or a pond—you could buy a backhoe and dig it in a day or you could do it with a shovel at no cost over several months.”

https://www.technologyreview.com/s/614245/biohackers-are-pirating-a-cheap-version-of-a-million-dollar-gene-therapy/

Thanks to Kebmodee for bringing this to the It’s Interesting community.

By Clare Wilson

“Maaah.” Goat calls might all sound the same to us, but the animals seem to recognise when one of their herd-mates is happy or sad from their bleats alone.

When goats hear a series of calls that change in emotional tone, they look towards the source of the sound – and their heart-rate readings indicate the animals’ own emotions are swayed by the noises.

Luigi Baciadonna of Queen Mary University of London and colleagues recorded goats bleating in different emotional states to see how they are affected by hearing each other’s calls.

To elicit positive sounds, they recorded goats that could see someone approaching with a bucket of food. To get negative ones they let an animal see another being fed while not getting any food themselves, or kept one in isolation for five minutes. “This was not extreme distress – I don’t think most people could tell the difference in their calls,” says Baciadonna.

Bleats with meaning
Then, to a different goat, the team played a bleat every 20 seconds, with nine positive ones followed by three negative or vice versa. At the start, the animal looked towards the source of the sound, but this tailed off as it got used to it. When the switch between emotional bleats happened, the goat was more likely to look again – but only with the second call of the batch of three. “There’s a bit of a delay in spotting the difference,” says Baciadonna.

The team also tried to see how the goats hearing the recordings felt, by measuring the variation in time between each heartbeat. In people, a high value for this is linked with more positive mood, while low values correlate with feeling depressed or stressed. Sure enough, when goats heard the happy bleats, their heart-rate variability was higher than when they heard the sad ones.

“I don’t doubt any of this,” says David Harwood, senior vice-president of the UK’s Goat Veterinary Society. “Goat owners are always telling us how intelligent their animals are.”

Journal reference: Frontiers in Zoology , DOI: 10.1186/s12983-019-0323-z

https://www.newscientist.com/article/2209218-goats-reveal-their-feelings-with-the-sound-of-distinctive-bleats/

By Michael Le Page

For many fish, changing sex is a normal part of life. For the first time, we have found out exactly how one of these species – a small cleaner fish called the bluehead wrasse – does it.

Erica Todd at the University of Otago in New Zealand and her colleagues removed some male bluehead wrasse from a few sites on reefs off Key Largo in Florida. This triggers females to change sex. They then caught changing females at regular intervals and looked at what was happening in their bodies down to the level of which genes were turning on or off.

They found that the loss of males makes some females stressed. They become more aggressive and start performing male courtship behaviours.

In individuals that become dominant in a social group, the genes associated with female hormones shut down in a day or two, and their colours begin to change – females of the species are yellow and brown (see above), while the males are green and blue.

At the same time, the egg-producing tissues in their ovaries start to shrink and begin to be replaced by sperm-producing tissues. In just 8 to 10 days, the mature ovaries are transformed into testes, and the fish can mate with females and sire offspring.

Read more: Zoologger: Shrimp plays chicken with its sex change
After around 20 days, the fish have the full male colours and the process is complete. “The bluehead is certainly remarkable for its speed,” says Todd. “Other species do take much longer.”

However, as the fish only live around two or three years, those 20 days are a fair chunk of their lifespan, equivalent to 2 years of a human lifetime.

Around 500 species of fish can change sex, a fact long known to biologists but which got wider attention recently when the Blue Planet II documentary narrated by David Attenborough showed Asian sheepshead wrasse changing sex. It is most common for female fish to turn into males but in some species including clownfish the males turn into females.

In at least one species, the hawkfish found around southern Japan, the females can not only turn into males but also turn back into females again if circumstances require it. For one species of shrimp, there is no need to change back. It starts out male but becomes an hermaphrodite – a phenomenon known as protandric simultaneous hermaphroditism.

Journal reference: Science Advances, DOI: 10.1126/sciadv.aaw7006

https://www.newscientist.com/article/2209254-bluehead-wrasse-fish-switch-from-female-to-male-in-just-20-days/

Sydney Brenner was one of the first to view James Watson and Francis Crick’s double helix model of DNA in April 1953. The 26-year-old biologist from South Africa was then a graduate student at the University of Oxford, UK. So enthralled was he by the insights from the structure that he determined on the spot to devote his life to understanding genes.

Iconoclastic and provocative, he became one of the leading biologists of the twentieth century. Brenner shared in the 2002 Nobel Prize in Physiology or Medicine for deciphering the genetics of programmed cell death and animal development, including how the nervous system forms. He was at the forefront of the 1975 Asilomar meeting to discuss the appropriate use of emerging abilities to alter DNA, was a key proponent of the Human Genome Project, and much more. He died on 5 April.

Brenner was born in 1927 in Germiston, South Africa to poor immigrant parents. Bored by school, he preferred to read books borrowed (sometimes permanently) from the public library, or to dabble with a self-assembled chemistry set. His extraordinary intellect — he was reading newspapers by the age of four — did not go unnoticed. His teachers secured an award from the town council to send him to medical school.

Brenner entered the University of the Witwatersrand in Johannesburg at the age of 15 (alongside Aaron Klug, another science-giant-in-training). Here, certain faculty members, notably the anatomist Raymond Dart, and fellow research-oriented medical students enriched his interest in science. On finishing his six-year course, his youth legally precluded him from practising medicine, so he devoted two years to learning cell biology at the bench. His passion for research was such that he rarely set foot on the wards — and he initially failed his final examination in internal medicine.


Sydney Brenner (right) with John Sulston, who both shared the Nobel Prize in Physiology or Medicine with Robert Horvitz in 2002.Credit: Steve Russell/Toronto Star/Getty

In 1952 Brenner won a scholarship to the Department of Physical Chemistry at Oxford. His adviser, Cyril Hinshelwood, wanted to pursue the idea that the environment altered observable characteristics of bacteria. Brenner tried to convince him of the role of genetic mutation. Two years later, with doctorate in hand, Brenner spent the summer of 1954 in the United States visiting labs, including Cold Spring Harbor in New York state. Here he caught up with Watson and Crick again.

Impressed, Crick recruited the young South African to the University of Cambridge, UK, in 1956. In the early 1960s, using just bacteria and bacteriophages, Crick and Brenner deciphered many of the essentials of gene function in a breathtaking series of studies.

Brenner had proved theoretically in the mid-1950s that the genetic code is ‘non-overlapping’ — each nucleotide is part of only one triplet (three nucleotides specify each amino acid in a protein) and successive ‘triplet codons’ are read in order. In 1961, Brenner and Crick confirmed this in the lab. The same year, Brenner, with François Jacob and Matthew Meselson, published their demonstration of the existence of messenger RNA. Over the next two years, often with Crick, Brenner showed how the synthesis of proteins encoded by DNA sequences is terminated.

This intellectual partnership dissolved when Brenner began to focus on whole organisms in the mid-1960s. He finally alighted on Caenorhabditis elegans. Studies of this tiny worm in Brenner’s arm of the legendary Laboratory of Molecular Biology (LMB) in Cambridge led to the Nobel for Brenner, Robert Horvitz and John Sulston.


Maxine Singer, Norton Zinder, Sydney Brenner and Paul Berg (left to right) at the 1975 meeting on recombinant DNA technology in Asilomar, California.Credit: NAS

And his contributions went well beyond the lab. In 1975, with Paul Berg and others, he organized a meeting at Asilomar, California, to draft a position paper on the United States’ use of recombinant DNA technology — introducing genes from one species into another, usually bacteria. Brenner was influential in persuading attendees to treat ethical and societal concerns seriously. He stressed the importance of thoughtful guidelines for deploying the technology to avoid overly restrictive regulation.

He served as director of the LMB for about a decade. Despite describing the experience as the biggest mistake in his life, he took the lab (with its stable of Nobel laureates and distinguished staff) to unprecedented prominence. In 1986, he moved to a new Medical Research Council (MRC) unit of molecular genetics at the city’s Addenbrooke’s Hospital, and began work in the emerging discipline of evolutionary genomics. Brenner also orchestrated Britain’s involvement in the Human Genome Project in the early 1990s.

From the late 1980s, Brenner steered the development of biomedical research in Singapore. Here he masterminded Biopolis, a spectacular conglomerate of chrome and glass buildings dedicated to biomedical research. He also helped to guide the Janelia Farm campus of the Howard Hughes Medical Institute in Ashburn, Virginia, and to restructure molecular biology in Japan.

Brenner dazzled, amused and sometimes offended audiences with his humour, irony and disdain of authority and dogma — prompting someone to describe him as “one of biology’s mischievous children; the witty trickster who delights in stirring things up.” His popular columns in Current Biology (titled ‘Loose Ends’ and, later, ‘False Starts’) in the mid-1990s led some seminar hosts to introduce him as Uncle Syd, a pen name he ultimately adopted.

Sydney was aware of the debt he owed to being in the right place at the right time. He attributed his successes to having to learn scientific independence in a remote part of the world, with few role models and even fewer mentors. He recounted the importance of arriving in Oxford with few scientific biases, and leaving with the conviction that seeing the double helix model one chilly April morning would be a defining moment in his life.

The Brenner laboratories (he often operated more than one) spawned a generation of outstanding protégés, including five Nobel laureates. Those who dedicated their careers to understanding the workings of C. elegans now number in the thousands. Science will be considerably poorer without Sydney. But his name will live forever in the annals of biology.

https://www.nature.com/articles/d41586-019-01192-9

261-plant-anaesthetics_1024

by PETER DOCKRILL

When somebody mentions anaesthetics, we probably think straight away of pain relief, but there’s a lot more going on in these complex chemical compounds than the simple negation of discomfort.

While there’s a range of chemicals that can induce anaesthesia in humans, just how these unrelated compounds trigger a lack of consciousness remains somewhat unclear.

And the mystery deepens when you consider it isn’t only animals that are affected by anaesthetics – plants are, too.

Humans in ancient societies were using things like herbs for various sedative purposes thousands of years ago, but the roots of modern anaesthesia began around the mid-19th century, when physicians began administering diethyl ether to patients during surgical procedures.

It was only a few decades later that scientists realised plants were similarly affected by ether, leading French physiologist Claude Bernard to conclude plants and animals shared a common biological essence that could be disrupted by anaesthetics.

261-plant-anaesthetics-2

A century and a half later, scientists are still investigating this strange commonality – basically by slipping plants the mickey and seeing what it does to them.

In a new study by Japanese and European researchers, the team filmed a number of plants that exhibit the phenomenon of rapid plant movement to see what kinds of anaesthetic chemicals affected them.

The sensitive plant (Mimosa pudica) usually closes its leaves in response to touch stimuli; but when exposed to diethyl ether, the dosed-up plants completely lost this response, becoming motionless, with the movement response only returning to normal after 7 hours.

In a separate experiment with the sensitive plants, a lidocaine solution also immobilised the leaves.

Similarly, the Venus flytrap (Dionaea muscipula) lost its ability to close its trap when exposed to diethyl ether – despite repeated prongings by the researchers – but the mechanism recovered in just 15 minutes.

Another carnivorous plant, Cape sundew (Drosera capensis), captures prey via sticky tentacles on its leaves, but experiments showed they lost the ability to bend their leaves and tentacles when exposed to the ether.

As for why plants are incapacitated by these chemicals, the researchers hypothesise it is to do with the inhibition of action potentials, preventing electrical impulses that help plants’ biological systems function.

“[B]ioelectricity and action potentials animate not only humans and animals but also plants,” the researchers explain.

“That animals/humans and also plants are animated via action potentials is of great importance for our ultimate understanding of the elusive nature of plant movements and plant-specific cognition/intelligence based plant behaviour.”

Ultimately, the team thinks these similarities between plant and animal reactions to anaesthetic compounds could lead to future research where plants might function as a substitute model or test system to explore human anaesthesia – something scientists are still pretty uncertain about.

It’s not easy being green, perhaps, but at least they shouldn’t feel any pain.

The findings are reported in Annals of Botany.

https://www.sciencealert.com/plants-respond-anaesthetics-weird-movement-action-brain

cientific studies on the cleaning power of spit, a lone fruit fly’s ability to spoil wine, and cannibals’ caloric intake garnered top honors at the 28th Ig Nobel Prize ceremony. The seriously silly citations, which “honor achievements that first make people laugh, and then think,” were awarded on Sept. 13 at Harvard University’s Sanders Theatre. Entertaining emcee Marc Abrahams and the savvy satirists of the Annals of Improbable Research produced the ceremony.

The coveted Chemistry Prize went to Portuguese researchers who quantified the cleaning power of human saliva. Nearly 30 years ago, conservators Paula Romão and Adília Alarcão teamed up with late University of Lisbon chemist César Viana to find out why conservators preferred their own saliva to any other solvent for cleaning certain objects—with the goal of finding a more hygienic substitute. Compared with popular solvents, saliva was the superior cleaning agent, particularly for gilded surfaces. The researchers attributed the polishing power to the enzyme α-amylase and suggested solutions of this hydrolase might achieve a spit shine similar to spit (Stud. Conserv. 1990, DOI: 10.1179/sic.1990.35.3.153).

A fruit fly in a glass of wine is always an unwelcome guest. But it turns out that as little as 1 ng of Drosophila melanogaster’s pheromone (Z)-4-undecenal can spoil a glass of pinot blanc. That discovery, from researchers led by Swedish University of Agricultural Sciences’ Peter Witzgall, received the Ig Nobel’s Biology Prize. Only female fruit flies carry the pheromone, so males can swim in spirits without delivering the offending flavor, but the Newscripts gang still prefers to drink wine without flies (J. Chem. Ecol. 2018, DOI: 10.1007/s10886-018-0950-4).

Putting the paleo diet in a new perspective, University of Brighton archaeologist James Cole took home the Nutrition Prize for calculating that Paleolithic people consumed fewer calories from a human-cannibalism diet than from a traditional meat diet. Thus, Cole concludes, Paleolithic cannibals may have dined on their companions for reasons unrelated to their nutritional needs (Sci. Rep. 2017, DOI: 10.1038/srep44707).

A team led by Wilfrid Laurier University psychologist Lindie H. Liang won the Economics Prize “for investigating whether it is effective for employees to use voodoo dolls to retaliate against abusive bosses.” Push in some pins: The findings indicate voodoo doll retaliations make employees feel better (Leadership Q. 2018, DOI: 10.1016/j.leaqua.2018.01.004).

The Newscripts gang previously reported about this year’s winners of the Ig Nobel for medicine, physicians Marc Mitchell and David Wartinger, who found that riding roller coasters can help people pass kidney stones (J. Am. Osteopath. Assoc.2016, DOI: 10.7556/jaoa.2016.128).

The Reproductive Medicine Prize went to urologists John Barry, Bruce Blank, and Michel Boileau, who, in 1980, used postage stamps t
o test nocturnal erections, described in their study “Nocturnal Penile Tumescence Monitoring with Stamps” (Urol. 1980, DOI: 10.1016/0090-4295(80)90414-8).

The Ig Nobel committee also gave out a Medical Education Prize this year, to gastroenterologist Akira Horiuchi for the report “Colonoscopy in the Sitting Position: Lessons Learned from Self-Colonoscopy” (Gastrointest. Endoscopy 2006, DOI: 10.1016/j.gie.2005.10.014).

Lund University cognitive scientists Gabriela-Alina Sauciuc and coworkers claimed the Anthropology Prize “for collecting evidence, in a zoo, that chimpanzees imitate humans about as often, and about as well, as humans imitate chimpanzees” (Primates 2017, DOI: 10.1007/s10329-017-0624-9).

For a landmark paper documenting that most people don’t read the instruction manual when using complicated products, a Queensland University of Technology team led by Alethea L. Blackler garnered the Literature Prize (Interact. Comp. 2014, DOI: 10.1093/iwc/iwu023).

And finally, the Ig Nobel Peace Prize was awarded to a team from the University of Valencia’s University Research Institute on Traffic & Road Safety “for measuring the frequency, motivation, and effects of shouting and cursing while driving an automobile” (J. Sociol. Anthropol. 2016, DOI: 10.12691/jsa-1-1-1).

The Ig Nobel ceremony can be viewed in its entirety at youtube.com/improbableresearch, and National Public Radio’s “Science Friday” will air an edited recording of the ceremony on the day after U.S. Thanksgiving.

https://cen.acs.org/people/awards/2018-Ig-Nobel-Prizes/96/i37

bacteria-crop750
Listeria bacteria transport electrons through their cell wall into the environment as tiny currents, assisted by ubiquitous flavin molecules (yellow dots). (Amy Cao graphic, copyright UC Berkeley)

By Robert Sanders

While bacteria that produce electricity have been found in exotic environments like mines and the bottoms of lakes, scientists have missed a source closer to home: the human gut.

UC Berkeley scientists discovered that a common diarrhea-causing bacterium, Listeria monocytogenes, produces electricity using an entirely different technique from known electrogenic bacteria, and that hundreds of other bacterial species use this same process.

Many of these sparking bacteria are part of the human gut microbiome, and many, like the bug that causes the food-borne illness listeriosis, which can also cause miscarriages, are pathogenic. The bacteria that cause gangrene (Clostridium perfringens) and hospital-acquired infections (Enterococcus faecalis) and some disease-causing streptococcus bacteria also produce electricity. Other electrogenic bacteria, like Lactobacilli, are important in fermenting yogurt, and many are probiotics.

“The fact that so many bugs that interact with humans, either as pathogens or in probiotics or in our microbiota or involved in fermentation of human products, are electrogenic — that had been missed before,” said Dan Portnoy, a UC Berkeley professor of molecular and cell biology and of plant and microbial biology. “It could tell us a lot about how these bacteria infect us or help us have a healthy gut.”

The discovery will be good news for those currently trying to create living batteries from microbes. Such “green” bioenergetic technologies could, for example, generate electricity from bacteria in waste treatment plants.

The research will be posted online Sept. 12 in advance of Oct. 4 print publication in the journal Nature.

Breathing metal

Bacteria generate electricity for the same reason we breathe oxygen: to remove electrons produced during metabolism and support energy production. Whereas animals and plants transfer their electrons to oxygen inside the mitochondria of every cell, bacteria in environments with no oxygen — including our gut, but also alcohol and cheese fermentation vats and acidic mines — have to find another electron acceptor. In geologic environments, that has often been a mineral — iron or manganese, for example — outside the cell. In some sense, these bacteria “breathe” iron or manganese.

microbebattery611
A microbial battery made with newly discovered electrogenic bacteria. Electrodes (CE, WE) are placed in jars full of bacteria, producing up to half a millivolt of electricity. Ajo-Franklin photo.

Transferring electrons out of the cell to a mineral requires a cascade of special chemical reactions, the so-called extracellular electron transfer chain, which carries the electrons as a tiny electrical current. Some scientists have tapped that chain to make a battery: stick an electrode in a flask of these bacteria and you can generate electricity.

The newly discovered extracellular electron transfer system is actually simpler than the already known transfer chain, and seems to be used by bacteria only when necessary, perhaps when oxygen levels are low. So far, this simpler electron transfer chain has been found in bacteria with a single cell wall — microbes classified as gram-positive bacteria — that live in an environment with lots of flavin, which are derivatives of vitamin B2.

“It seems that the cell structure of these bacteria and the vitamin-rich ecological niche that they occupy makes it significantly easier and more cost effective to transfer electrons out of the cell,” said first author Sam Light, a postdoctoral fellow. “Thus, we think that the conventionally studied mineral-respiring bacteria are using extracellular electron transfer because it is crucial for survival, whereas these newly identified bacteria are using it because it is ‘easy.’”

To see how robust this system is, Light teamed up with Caroline Ajo-Franklin from Lawrence Berkeley National Laboratory, who explores the interactions between living microbes and inorganic materials for possible applications in carbon capture and sequestration and bio-solar energy generation.

She used an electrode to measure the electric current that streams from the bacteria — up to 500 microamps — confirming that it is indeed electrogenic. In fact, they make about as much electricity — some 100,000 electrons per second per cell — as known electrogenic bacteria.

Light is particularly intrigued by the presence of this system in Lactobacillus, bacteria crucial to the production of cheese, yogurt and sauerkraut. Perhaps, he suggests, electron transport plays a role in the taste of cheese and sauerkraut.

“This is a whole big part of the physiology of bacteria that people didn’t realize existed, and that could be potentially manipulated,” he said.

Light and Portnoy have many more questions about how and why these bacteria developed such a unique system. Simplicity — it’s easier to transfer electrons through one cell wall rather than through two — and opportunity — taking advantage of ubiquitous flavin molecules to get rid of electrons – appear to have enabled these bacteria to find a way to survive in both oxygen-rich and oxygen-poor environments.

Other co-authors are Lin Su and Jose A. Cornejo of Berkeley Lab and Rafael Rivera-Lugo, Alexander Louie and Anthony T. Iavarone of UC Berkeley. The research was funded by the National Institute of Allergy and Infectious Diseases of the National Institutes of Health and the Office of Naval Research.

http://news.berkeley.edu/2018/09/12/gut-bacterias-shocking-secret-they-produce-electricity/