A NASA scientist’s incredible animation shows how dinosaurs roamed the Earth on the other side of the Milky Way galaxy

by Morgan McFall-Johnsen

The NASA scientist Jessie Christiansen made a video that traces our solar system’s movement through the Milky Way as dinosaurs emerged, went extinct, and were replaced by mammals on Earth.

Our sun orbits the galaxy’s center, so many dinosaurs roamed the Earth while the planet was on the other side of the Milky Way.

Our solar system’s orbit keeps us just the right distance from the galaxy’s chaotic center for life to exist.

When dinosaurs ruled the Earth, the planet was on a completely different side of the galaxy.

A new animation by the NASA scientist Jessie Christiansen shows just how long the dinosaurs’ reign lasted — and how short the era of humans has been in comparison — by tracing our solar system’s movement through the Milky Way.

Our sun orbits the galaxy’s center, completing its rotation every 250 million years or so. So Christiansen’s animation shows that the last time our solar system was at its current point in the galaxy, the Triassic period was in full swing and dinosaurs were just emerging. Many of the most iconic dinosaurs roamed the Earth when the planet was in a very different part of the Milky Way.

Christiansen got the idea to illustrate this history when she was leading a stargazing party at the California Institute of Technology in Pasadena. Attendees were astonished when she mentioned that our solar system was across the galaxy when dinosaurs roamed.

“That was the first time I realized that those time scales — archaeological, fossil-record time scales and astronomical time scales — actually kind of match along together,” Christiansen told Business Insider. “Then I had this idea that I could map out dinosaur evolution through the galaxy’s rotation.”

Christiansen said it took her about four hours to make the film using timed animations in PowerPoint. She also noted a couple of minor corrections to the text in her video: Plesiosaurs are not dinosaurs, and we complete a galactic orbit every 250 million years, not 200 million years.

‘A spiral through space’

But galactic movement is more complicated than the video shows. The other stars and planetary systems in the galaxy are also moving, at different speeds and in different orbits. The inner portions spin faster than the outer regions.

What’s more, the galaxy itself is moving through space, slowly approaching the nearby Andromeda galaxy.

“The animation kind of makes it seem like we’ve come back to the same spot, but in reality the whole galaxy has moved a very long way,” Christiansen said. “It’s more like we’re doing a spiral through space. As the whole galaxy’s moving and we’re rotating around the center, it kind of creates this spiral.”

So in the solar system’s rotation around the galactic center, we’re not returning to a fixed point. The neighborhood is different from the last time we were here.

Earth, however, is not drastically different; it still supports complex life. That’s partially thanks to the path of our sun’s galactic orbit.

“Our solar system doesn’t travel to the center of the galaxy and then back again,” Christiansen said. “We always stay about this distance away.”

In other words, even as our solar system travels through the Milky Way, it doesn’t approach the inhospitable center, where life probably wouldn’t survive.

“There’s a lot of stars, it’s dynamically unstable, there’s a lot of radiation,” Christiansen said. “Our solar system certainly doesn’t pass through that.”

That’s a huge part of why dinosaurs, mammals, or any other form of life can exist on Earth.

https://www.businessinsider.com/video-nasa-scientist-dinosaurs-milky-way-2019-10

First sun-dimming experiment will test a way to cool Earth


Frank Keutsch, Zhen Dai and David Keith (left to right) in Keutsch’s laboratory at Harvard University.

Zhen Dai holds up a small glass tube coated with a white powder: calcium carbonate, a ubiquitous compound used in everything from paper and cement to toothpaste and cake mixes. Plop a tablet of it into water, and the result is a fizzy antacid that calms the stomach. The question for Dai, a doctoral candidate at Harvard University in Cambridge, Massachusetts, and her colleagues is whether this innocuous substance could also help humanity to relieve the ultimate case of indigestion: global warming caused by greenhouse-gas pollution.

The idea is simple: spray a bunch of particles into the stratosphere, and they will cool the planet by reflecting some of the Sun’s rays back into space. Scientists have already witnessed the principle in action. When Mount Pinatubo erupted in the Philippines in 1991, it injected an estimated 20 million tonnes of sulfur dioxide into the stratosphere — the atmospheric layer that stretches from about 10 to 50 kilometres above Earth’s surface. The eruption created a haze of sulfate particles that cooled the planet by around 0.5 °C. For about 18 months, Earth’s average temperature returned to what it was before the arrival of the steam engine.

The idea that humans might turn down Earth’s thermostat by similar, artificial means is several decades old. It fits into a broader class of planet-cooling schemes known as geoengineering that have long generated intense debate and, in some cases, fear.

Researchers have largely restricted their work on such tactics to computer models. Among the concerns is that dimming the Sun could backfire, or at least strongly disadvantage some areas of the world by, for example, robbing crops of sunlight and shifting rain patterns.

But as emissions continue to rise and climate projections remain dire, conversations about geoengineering research are starting to gain more traction among scientists, policymakers and some environmentalists. That’s because many researchers have come to the alarming conclusion that the only way to prevent the severe impacts of global warming will be either to suck massive amounts of carbon dioxide out of the atmosphere or to cool the planet artificially. Or, perhaps more likely, both.

If all goes as planned, the Harvard team will be the first in the world to move solar geoengineering out of the lab and into the stratosphere, with a project called the Stratospheric Controlled Perturbation Experiment (SCoPEx). The first phase — a US$3-million test involving two flights of a steerable balloon 20 kilometres above the southwest United States — could launch as early as the first half of 2019. Once in place, the experiment would release small plumes of calcium carbonate, each of around 100 grams, roughly equivalent to the amount found in an average bottle of off-the-shelf antacid. The balloon would then turn around to observe how the particles disperse.

The test itself is extremely modest. Dai, whose doctoral work over the past four years has involved building a tabletop device to simulate and measure chemical reactions in the stratosphere in advance of the experiment, does not stress about concerns over such research. “I’m studying a chemical substance,” she says. “It’s not like it’s a nuclear bomb.”

Nevertheless, the experiment will be the first to fly under the banner of solar geoengineering. And so it is under intense scrutiny, including from some environmental groups, who say such efforts are a dangerous distraction from addressing the only permanent solution to climate change: reducing greenhouse-gas emissions. The scientific outcome of SCoPEx doesn’t really matter, says Jim Thomas, co-executive director of the ETC Group, an environmental advocacy organization in Val-David, near Montreal, Canada, that opposes geoengineering: “This is as much an experiment in changing social norms and crossing a line as it is a science experiment.”

Aware of this attention, the team is moving slowly and is working to set up clear oversight for the experiment, in the form of an external advisory committee to review the project. Some say that such a framework, which could pave the way for future experiments, is even more important than the results of this one test. “SCoPEx is the first out of the gate, and it is triggering an important conversation about what independent guidance, advice and oversight should look like,” says Peter Frumhoff, chief climate scientist at the Union of Concerned Scientists in Cambridge, Massachusetts, and a member of an independent panel that has been charged with selecting the head of the advisory committee. “Getting it done right is far more important than getting it done quickly.”

Joining forces
In many ways, the stratosphere is an ideal place to try to make the atmosphere more reflective. Small particles injected there can spread around the globe and stay aloft for two years or more. If placed strategically and regularly in both hemispheres, they could create a relatively uniform blanket that would shield the entire planet (see ‘Global intervention’). The process does not have to be wildly expensive; in a report last month, the Intergovernmental Panel on Climate Change suggested that a fleet of high-flying aircraft could deposit enough sulfur to offset roughly 1.5 °C of warming for around $1 billion to $10 billion per year1.

Most of the solar geoengineering research so far has focused on sulfur dioxide, the same substance released by Mount Pinatubo. But sulfur might not be the best candidate. In addition to cooling the planet, the aerosols generated in that eruption sped up the rate at which chlorofluorocarbons deplete the ozone layer, which shields the planet from the Sun’s harmful ultraviolet radiation. Sulfate aerosols are also warmed by the Sun, enough to potentially affect the movement of moisture and even alter the jet stream. “There are all of these downstream effects that we don’t fully understand,” says Frank Keutsch, an atmospheric chemist at Harvard and SCoPEx’s principal investigator.

The SCoPEx team’s initial stratospheric experiments will focus on calcium carbonate, which is expected to absorb less heat than sulfates and to have less impact on ozone. But textbook answers — and even Dai’s tabletop device — can’t capture the full picture. “We actually don’t know what it would do, because it doesn’t exist in the stratosphere,” Keutsch says. “That sets up a red flag.”

SCoPEx aims to gather real-world data to sort this out. The experiment began as a partnership between atmospheric chemist James Anderson of Harvard and experimental physicist David Keith, who moved to the university in 2011. Keith has been investigating a variety of geoengineering options off and on for more than 25 years. In 2009, while at the University of Calgary in Canada, he founded the company Carbon Engineering, in Squamish, which is working to commercialize technology to remove carbon dioxide from the atmosphere. After joining Harvard, Keith used research funding he had received from Microsoft co-founder Bill Gates, to begin planning the experiment.

Keutsch, who got involved later, is not a climate scientist and is at best a reluctant geoengineer. But he worries about where humanity is heading, and what that means for his children’s future. When he saw Keith talk about the SCoPEx idea at a conference after starting at Harvard in 2015, he says his initial reaction was that the idea was “totally insane”. Then he decided it was time to engage. “I asked myself, an atmospheric chemist, what can I do?” He joined forces with Keith and Anderson, and has since taken the lead on the experimental work.

An eye on the sky
Already, SCoPEx has moved farther along than earlier solar geoengineering efforts. The UK Stratospheric Particle Injection for Climate Engineering experiment, which sought to spray water 1 kilometre into the atmosphere, was cancelled in 2012 in part because scientists had applied for patents on an apparatus that could ultimately affect every human on the planet. (Keith says there will be no patents on any technologies involved in the SCoPEx project.) And US researchers with the Marine Cloud Brightening Project, which aims to spray saltwater droplets into the lower atmosphere to increase the reflectivity of ocean clouds, have been trying to raise money for the project for nearly a decade.

Although SCoPEx could be the first solar geoengineering experiment to fly, Keith says other projects that have not branded themselves as such have already provided useful data. In 2011, for example, the Eastern Pacific Emitted Aerosol Cloud Experiment pumped smoke into the lower atmosphere to mimic pollution from ships, which can cause clouds to brighten by capturing more water vapour. The test was used to study the effect on marine clouds, but the results had a direct bearing on geoengineering science: the brighter clouds produced a cooling effect 50 times greater than the warming effect of the carbon emissions from the researchers’ ship2.

Keith says that the Harvard team has yet to encounter public protests or any direct opposition — aside from the occasional conspiracy theorist. The challenge facing researchers, he says, stems more from a fear among science-funding agencies that investing in geoengineering will lead to protests by environmentalists.

To help advance the field, Keith set a goal in 2016 of raising $20 million to support a formal research programme that would cover not just the experimental work, but also research into modelling, governance and ethics. He has raised around $12 million so far, mostly from philanthropic sources such as Gates; the pot provides funding to dozens of people, largely on a part-time basis.

Keith and Keutsch also want an external advisory committee to review SCoPEx before it flies. The committee, which is still to be selected, will report to the dean of engineering and the vice-provost for research at Harvard. “We see this as part of a process to build broader support for research on this topic,” Keith says.

Keutsch is looking forward to having the guidance of an external group, and hopes that it can provide clarity on how tests such as his should proceed. “This is a much more politically challenging experiment than I had anticipated,” he says. “I was a little naive.”

SCoPEx faces technical challenges, too. It must spray particles of the right size: the team calculates that those with a diameter of about 0.5 micrometres should disperse and reflect sunlight well. The balloon must also be able to reverse its course in the thin air so that it can pass through its own wake. Assuming the team is able to find the calcium carbonate plume — and there is no guarantee that they can — SCoPEx needs instruments that can analyse the particles and, it is hoped, carry samples back to Earth.

“It’s going to be a hard experiment, and it may not work,” says David Fahey, an atmospheric scientist at the National Oceanic and Atmospheric Administration in Boulder, Colorado. In the hope that it will, Fahey’s team has provided SCoPEx with a lightweight instrument that can reliably measure the size and number of particles that are released. The balloon will also be equipped with a laser device that can monitor the plume from afar. Other equipment that could collect information on the level of moisture and ozone in the stratosphere could fly on the balloon as well.

Up to the stratosphere
Keutsch and Keith are still working out some of the technical details. Plans with one balloon company fell through, so they are now working with a second. And an independent team of engineers in California is working on options for the sprayer. To simplify things, the SCoPEx group plans to fly the balloon during the spring or autumn, when stratospheric winds shift direction and — for a brief period — calm down, which will make it easier to track the plume.

For all of these reasons, Keutsch characterizes the first flight as an engineering test, mainly intended to demonstrate that everything works as it should. The team is ready to spray calcium carbonate particles, but could instead use salt water to test the sprayer if the advisory committee objects.

Keith still thinks that sulfate aerosols might ultimately be the best choice for solar geoengineering, if only because there has been more research about their impact. He says that the possibility of sulfates enhancing ozone depletion should become less of a concern in the future, as efforts to restore the ozone layer through pollutant reductions continue. Nevertheless, his main hope is to establish an experimental programme in which scientists can explore different aspects of solar geoengineering.

There are a lot of outstanding questions. Some researchers have suggested that solar geoengineering could alter precipitation patterns and even lead to more droughts in some regions. Others warn that one of the possible benefits of solar geoengineering — maintaining crop yields by protecting them from heat stress — might not come to pass. In a study published in August, researchers found that yields of maize (corn), soya, rice and wheat3 fell after two volcanic eruptions, Mount Pinatubo in 1991 and El Chichón in Mexico in 1982, dimmed the skies. Such reductions could be enough to cancel out any potential gains in the future.

Keith says the science so far suggests that the benefits could well outweigh the potential negative consequences, particularly compared with a world in which warming goes unchecked. The commonly cited drawback is that shielding the Sun doesn’t affect emissions, so greenhouse-gas levels would continue to rise and the ocean would grow even more acidic. But he suggests that solar geoengineering could reduce the amount of carbon that would otherwise end up in the atmosphere, including by minimizing the loss of permafrost, promoting forest growth and reducing the need to cool buildings. In an as-yet-unpublished analysis of precipitation and temperature extremes using a high-resolution climate model, Keith and others found that nearly all regions of the world would benefit from a moderate solar geoengineering programme. “Despite all of the concerns, we can’t find any areas that would be definitely worse off,” he says. “If solar geoengineering is as good as what is shown in these models, it would be crazy not to take it seriously.”

There is still widespread uncertainty about the state of the science and the assumptions in the models — including the idea that humanity could come together to establish, maintain and then eventually dismantle a well-designed geoengineering programme while tackling the underlying problem of emissions. Still, prominent organizations, including the UK Royal Society and the US National Academies of Sciences, Engineering, and Medicine, have called for more research. In October, the academies launched a project that will attempt to provide a blueprint for such a programme.

Some organizations are already trying to promote discussions among policymakers and government officials at the international level. The Solar Radiation Management Governance Initiative is holding workshops across the global south, for instance. And Janos Pasztor, who handled climate issues under former UN secretary-general Ban Ki-moon, has been talking to high-level government officials around the world in his role as head of the Carnegie Climate Geoengineering Governance Initiative, a non-profit organization based in New York. “Governments need to engage in this discussion and to understand these issues,” Pasztor says. “They need to understand the risks — not just the risks of doing it, but also the risks of not understanding and not knowing.”

One concern is that governments might one day panic over the consequences of global warming and rush forward with a haphazard solar-geoengineering programme, a distinct possibility given that the costs are cheap enough that many countries, and perhaps even a few individuals, could probably afford to go it alone. These and other questions arose earlier this month in Quito, Ecuador, at the annual summit of the Montreal Protocol, which governs chemicals that damage the stratospheric ozone layer. Several countries called for a scientific assessment of the potential effects that solar geoengineering could have on the ozone layer, and on the stratosphere more broadly.

If the world gets serious about geoengineering, Fahey says that there are plenty of sophisticated experiments that researchers could do using satellites and high-flying aircraft. But for now, he says, SCoPEx will be valuable — if only because it pushes the conversation forward. “Not talking about geoengineering is the greatest mistake we can make right now.”

Nature 563, 613-615 (2018)

doi: 10.1038/d41586-018-07533-4

Could a Dose of Sunshine Make You Smarter?

By Ruth Williams

The sun’s ultraviolet (UV) radiation is a major cause of skin cancer, but it offers some health benefits too, such as boosting production of essential vitamin D and improving mood. A recent report in Cell adds enhanced learning and memory to UV’s unexpected benefits.

Researchers have discovered that, in mice, exposure to UV light activates a molecular pathway that increases production of the brain chemical glutamate, heightening the animals’ ability to learn and remember.

“The subject is of strong interest, because it provides additional support for the recently proposed theory of ultraviolet light’s regulation of the brain and central neuroendocrine system,” dermatologist Andrzej Slominski of the University of Alabama who was not involved in the research writes in an email to The Scientist.

“It’s an interesting and timely paper investigating the skin-brain connection,” notes skin scientist Martin Steinhoff of University College Dublin’s Center for Biomedical Engineering who also did not participate in the research. “The authors make an interesting observation linking moderate UV exposure to . . . [production of] the molecule urocanic acid. They hypothesize that this molecule enters the brain, activates glutaminergic neurons through glutamate release, and that memory and learning are increased.”

While the work is “fascinating, very meticulous, and extremely detailed,” says dermatologist David Fisher of Massachusetts General Hospital and Harvard Medical School, “it does not imply that UV is actually good for you. . . . Across the board, for humanity, UV really is dangerous.”

Wei Xiong of the University of Science and Technology of China who led the research did not set out to investigate the effects of UV light on the brain or the skin-brain connection. He stumbled upon his initial finding “almost accidentally,” he explains in an email to The Scientist. Xiong and his colleagues were using a mass spectrometry technique they had recently developed for analyzing the molecular contents of single neurons, when their results revealed the unexpected presence of urocanic acid—a little-known molecule produced in the skin in response to UV light.

“It was a surprise because we checked through all the literature and found no reports of the existence of this small molecule in the central nervous system,” writes Xiong.

With little information to go on, Xiong and his colleagues decided to see whether UV light could also boost levels of urocanic acid in the brain. They exposed shaved mice to a low-dose of UVB—responsible for sunburn in humans—for 2 hours, then performed mass spectrometry on the animals’ individual brain cells. Sure enough, levels of urocanic acid increased in neurons of the animals exposed to the light, but not in those of control animals.

Urocanic acid can absorb UV rays and, as a result, may be able to protect skin against the sun’s harmful effects. But in the liver and other peripheral tissues, the acid is also known to be an intermediate molecule generated in the metabolic pathway that converts histidine to glutamate. Given glutamate’s role in the brain as an excitatory neurotransmitter, Xiong and his colleagues were interested to test whether the observed UV-dependent increase in urocanic acid in neurons might be coupled with increased glutamate production. It was.

Next, the team showed that UV light enhanced electrical transmission between glutaminergic neurons in brain slices taken from animals exposed to UV, but not in those from control animals. This UV-induced effect was prevented when the researchers inhibited activity of the enzyme urocanase, which converts urocanic acid to glutamate, indicating that the acid was indeed the mediator of the UV-induced boost in glutaminergic activity.

Lastly, the team showed that mice exposed to UV performed better in motor learning and recognition memory tasks than their unexposed counterparts. And, as before, treating the animals with a urocanase inhibitor prevented the UV-induced improvements in learning and memory. Administering urocanic acid directly to animals not exposed to ultraviolet light also spurred similar learning and memory improvements to those achieved with UV exposure.

Whether the results obtained in mice, which are nocturnal and rarely see the sun, will hold true in humans is yet to be determined. But, Fisher says, if the results do hold, the finding that urocanic acid alone can enhance learning and memory might suggest “a way to utilize this information to benefit people without exposing them to the damaging effects of UV.”

H. Zhu et al., “Moderate UV exposure enhances learning and memory by promoting a novel glutamate biosynthetic pathway in the brain,” Cell, doi: 10.1016/j.cell.2018.04.014, 2018.

https://www.the-scientist.com/?articles.view/articleNo/54603/title/Could-a-Dose-of-Sunshine-Make-You-Smarter-/

This island is powered entirely by solar panels and batteries thanks to SolarCity


Ta’u Island’s residents live off a solar power and battery storage-enabled microgrid.

by Amelia Heathman

SolarCity was applauded when it announced its plans for solar roofs earlier this year. Now, it appears it is in the business of creating solar islands.

The island of Ta’u in American Samoa, more than 4,000 miles from the United States’ West Coast, now hosts a solar power and battery storage-enabled microgrid that can supply nearly 100 per cent of the island’s power needs from renewable energy.

The microgrid is made up of 1.4 megawatts of solar generation capacity from SolarCity and Tesla and six-megawatt hours of battery storage from 60 Tesla Powerpacks. The whole thing took just a year to implement.

Due to the remote nature of the island, its citizens were used to constant power rationing, outages and a high dependency on diesel generators. The installation of the microgrid, however, provides a cost-saving alternative to diesel, and the island’s core services such as the local hospital, schools and police stations don’t have to worry about outages or rationing anymore.

“It’s always sunny out here, and harvesting that energy from the sun will make me sleep a lot more comfortably at night, just knowing I’ll be able to serve my customers,” said Keith Ahsoon, a local resident whose family owns one of the food stores on the island.

The power from the new Ta’u microgrid provides energy independence for the nearly 600 residents of the island. The battery system also allows the residents to use stored solar energy at night, meaning energy will always be available. As well as providing energy, the project will allow the island to significantly save on energy costs and offset the use of more than 109,500 gallons of diesel per year.

With concerns over climate change and the effects the heavy use of fossil fuels are having on the planet, more initiatives are taking off to prove the power of solar energy, whether it is SolarCity fueling an entire island or Bertrand Piccard’s Solar Impulse plane flying around the world on only solar energy.

Obviously Ta’u island’s location off the West Coast means it is in a prime location to harness the Sun’s energy, which wouldn’t necessarily work in the UK. Having said that, this is an exciting way to show where the future of solar energy could take us if it was amplified on a larger scale.

The project was funded by the American Samoa Economic Development Authority, the Environmental Protection Agency and the Department of Interior, whilst the microgrid is operated by the American Samoa Power Authority.

http://www.wired.co.uk/article/island-tau-solar-energy-solarcity

Thanks to Kebmodee for bringing this to the attention of the It’s Interesting community.

Move over, Tatooine: Planet discovered orbiting three suns

By James Griffiths

Astronomers have discovered a planet with three suns, where an observer would experience either constant daylight or triple sunrises and sunsets depending on the seasons, which last longer than a human lifetime.

The planet, HD 131399Ab, is the first discovered in a stable orbit in a triple-star system; previously, it had been assumed that the unstable gravity would result in any planet being quickly flung out.

“If the planet was further away from the most massive star in the system, it would be kicked out of the system,” Daniel Apai of the University of Arizona said in a statement.

“Our computer simulations have shown that this type of orbit can be stable, but if you change things around just a little bit, it can become unstable very quickly.”

Kevin Wagner, who discovered the planet and led follow-up observations, said that “for about half of the planet’s orbit, which lasts 550 Earth years, three stars are visible in the sky.”

“It is not clear how this planet ended up on its wide orbit in this extreme system, and we can’t say yet what this means for our broader understanding of the types of planetary systems, but it shows that there is more variety out there than many would have deemed possible.”

The planet — reminiscent of Luke Skywalker’s twin-starred homeworld of Tatooine in “Star Wars” — is located in the Centaurus constellation, about 320 light-years from Earth.

It was found using the SPHERE instrument on the European Southern Observatory’s Very Large Telescope, which is sensitive to infrared light, allowing it to detect the heat signatures of young planets.

About 16 million years old, HD 131399Ab is one of the youngest exoplanets discovered to date, the observatory said in a statement.

By comparison, Earth is about 4.5 billion years old.

With an average temperature of about 580 degrees Celsius (1,076 degrees Fahrenheit) and an estimated mass of four Jupiters, it is also one of the coldest and smallest directly imaged exoplanets.

“HD 131399Ab is one of the few exoplanets that have been directly imaged, and it’s the first one in such an interesting dynamical configuration,” Apai said.

http://www.cnn.com/2016/07/07/health/planet-orbits-three-suns/index.html