Posts Tagged ‘social behavior’

Any ad executive will tell you that sex sells. But why? Do sexy images stimulate our biological urges, somehow motivating us to buy products? Or do marketers merely exploit and perpetuate our cultural obsession with sexual imagery? Do people want the beauty, wealth and power celebrities have, and use the products they endorse in the hope of achieving these same qualities?

These explanations are plausible, but my colleagues and I have a new one, based on decades of work comparing the behavior and neurobiology of decision-making in monkeys and people: Our brains have been fine-tuned by evolution to prioritize social information, and this laser focus on others profoundly shapes our decisions.

As early as the 1870s, companies like Pearl Tobacco and later, W. Duke & Sons, employed social advertising, showcasing nude or partially exposed women on posters and trading cards. Although the images had no direct link to the products, sales increased. A century and a half later, it seems impossible to escape sexual imagery in advertising. The same is true for celebrities in marketing campaigns—actors, musicians, athletes, even politicians and business leaders. These celebrities often don’t even use the products they advertise, yet the method still seems to work.

Our brains have circuits specialized for identifying, remembering and inferring the mental states of others so we can predict their behavior and make good decisions. In other words, we’re built to deal with people. But we’re not alone in this connection. Many species of monkeys and apes—our closest living relatives—also live in large, complex, dynamic societies. Behavioral studies show that, like us, these primates identify others, track prior encounters, empathize with friends and relatives, and make inferences about individuals’ mental states.

For people and monkeys alike, it’s important to find a good mate, make powerful allies and avoid potential threats. Paying close attention to social cues can improve these choices. In fact, both men and male monkeys are exquisitely sensitive to indications of female fertility. Men rate ovulating women as more attractive, and tip more for lap dances by fertile women. Similarly, male rhesus macaques prefer images of females with artificially reddened faces and hindquarters, coloration that predicts ovulation and sexual receptivity.

Women and female monkeys are also sensitive to clues about male quality, although what we know about that is based on fewer studies. A woman’s preference shifts toward more masculine faces—broader jaw, wider-set but smaller eyes—during ovulation. Female macaques, when ovulating, tend to mate with higher-ranking males and prefer those with reddened faces caused by a testosterone surge. Other studies found that both people and monkeys pay more attention to high-status individuals and are more likely to follow their gaze.

According to economics, we can quantify how much someone values something—coffee, a magazine—by how much he or she will pay for it. In our latest work, we developed an assessment, dubbed the “pay-per-view” test, to measure subconscious value of visual images. In the experiment, monkeys had the option to forego juice or food for a glimpse at a picture of another monkey. People could choose whether to accept a smaller cash reward to peek at a picture of another individual.

Our findings were striking. Male college students paid slightly more money to view an attractive woman than an unattractive one, losing several dollars during the experiment. Female students were much less motivated to see attractive men. Monkeys of both genders valued sex and status, accepting less food or juice to see images of monkey genitalia and faces of high-status males. In contrast, they required extra food or juice to look at faces of low-status males.

Based on these findings, it’s clear that monkeys and humans value information about sex and status so much that it can replace rewards like food, juice and money. Strong parallels between the two suggest shared brain mechanisms at work.

To test this idea, we used fMRI to scan the brains of male students in two circumstances: one, while they viewed female faces of varying attractiveness, the other while money was either deposited or withdrawn from their study stipend. The sight of attractive faces strongly activated a network of brain areas previously implicated in processing rewards—including the orbitofrontal cortex, ventromedial prefrontal cortex, and medial and ventral striatum—and neural activity increased with increasing attractiveness. The same happened with monetary rewards and losses. We believe this network computes economic “utility,” a person’s internal desire for or satisfaction with a good or service, thought to underlie decisions.

To determine the physiological basis of these signals, we measured individual brain cell activity in monkeys. Some fired strongly when male monkeys chose to see female genitalia, a high-status male face, or a large juice reward, but fired less when they chose low-status faces or small juice rewards. Specific brain cells reacted to images of faces and genitals but not juice, indicating the brain’s reward system possesses dedicated hardware for identifying and prioritizing key social information.

Can these discoveries help explain the power of sex and status in advertising? In theory, ads that associate sex or status with specific brands or products activate the brain mechanisms that prioritize social information, and turning on this switch may bias us toward the product.

To test this idea, we exposed male rhesus macaques to logos of household brands like Nike and Pizza Hut paired with a social image (e.g., female genitalia, high-status male face) or the same image with pixels rearranged to make it unrecognizable but retain the same brightness, contrast, and color, salient cues that could draw attention to a stimulus. Monkeys received a sweet treat for touching the screen after the ad, then had the choice between brands paired with a social image or its scrambled version.

Our advertising campaign was remarkably effective. Monkeys developed preferences for brands linked with sex and status. Both males and females preferred logos paired with sexual cues and the faces of high-status monkeys. And the more often male monkeys saw sexual advertisements, the more they preferred the brands. Sound familiar? Even monkeys, it seems, can be persuaded to choose a brand through social advertising.

Given the nearly identical specializations of brain reward circuits to prioritize social information in monkeys and people, is it any wonder that sex and status sell?


By Richard Kemeny

According to much of the scientific literature, dominance in social animals goes hand-in-hand with healthier lives. Yet leaders of the pack might not be healthier in all aspects, and according to a study published last week (February 26) in Scientific Reports, they are more at risk of parasite infection.

“While high-ranking animals often have the best access to food and mates, these advantages appear to come with strings attached,” says study coauthor Elizabeth Archie, a behavioral and disease ecologist at the University of Notre Dame, in an email to The Scientist. “These strings take the form of higher parasite exposure and susceptibility.”

Lower social status is usually linked to poorer health, according to previous studies. Animals towards the bottom of hierarchies have to struggle more for resources, and are often subjected to aggressive behavior from their superiors. In many species of birds, mice, and nonhuman primates, for instance, poorer physical condition is more common for subordinates. Female macaques of low social status, for example, have been shown to have lower bone density and an increased risk of developing inflammatory diseases.

Yet the relationship between social subordination and infectious disease risk hasn’t been clearly measured, according Archie and her coauthors. To look at the relationship between social status and one particular malady—parasite infections—they carried out a meta-analysis of 39 studies spanning 31 species, searching for patterns of parasitism.

In the majority of studies, those individuals in dominant positions—in particular, dominant males—were found to be more at risk of being infected. The effect was strongest in mammals, and in ordered hierarchical societies where social status is correlated with sexual activity.

These findings support two previous hypotheses about the links between social status and parasitism. One relates infection risk to resource access: exposure to infection is more common when animals feed and mate more. Dominant reindeer, for example, spend more time eating than subordinate individuals, and are more likely to become infected by nematodes. And greater sexual activity brings more risk of transmitted infections. Take, for instance, dominant feral cats, whose sexual proclivity increases the chances of developing Feline Immunodeficiency Virus.

The other hypothesis proposes a trade-off between reproductive effort and immunity to disease. In other words, those in dominant positions expend more energy on mating, and therefore invest less into costly immune defences.

“When you put it in the context [of these hypotheses], it does make a lot of sense,” says Jennifer Koop, a biologist at the University of Massachusetts-Dartmouth, who was not involved in the study.

Archie doesn’t think that individuals will deliberately opt for lower status in order to avoid infection. “High status comes with so many other advantages that the cost of a few more parasites might not be enough for individuals to shun high social status,” she says.

It’s also conceivable that there are benefits to both parasite and host in this relationship, says Nicole Mideo, an evolutionary biologist at the Univeristy of Toronto, who was not involved in the study. “The parasites are exploiting the resources of the host, so if you have a host that doesn’t get access to much food, then the parasite isn’t going to get access to much food,” she says.

This study mostly focused on parasitic worms, a limitation the researchers want to expand beyond. Additionally, the toll on dominant animals’ health of the increased risk of parasite infections was not explored. Mideo explains that there could be subtle advantages here, as research has shown worms can alter immune systems, and might protect against other infections. “It’s entirely possible that having worm infections does confer some sort of advantage in the context of other potential diseases,” she says.

Habig et al., “Social status and parasitism in male and female vertebrates: a meta-analysis,” Scientific Reports, doi:10.1038/s41598-018-21994-7, 2018.