Posts Tagged ‘skin’

Users of prosthetic limbs could soon be able to feel sensation on them, thanks to an “electronic skin” (e-skin) invented by researchers from the National University of Singapore (NUS).

The artificial nervous system can detect touch more than 1,000 times faster than the human equivalent and is the first e-skin in the world to do so, according to Assistant Professor Benjamin Tee from the Department of Materials Science and Engineering at the NUS Faculty of Engineering, who led the research.

Previously, damaged e-skins would lose their function due to their interlinked wiring system.

But if a corner of the Asynchronous Coded Electronic Skin (Aces) nervous system tears, the rest of the skin continues to have sensation, just like human skin, the researchers said.

This is because the Aces detects signals like the human nervous system and it comprises a network of sensors – each working independently – connected via a single electrical conductor.

The research team, which took 11/2 years to develop the sensor system, published its innovation in Science Robotics journal today.

“When you lose a limb and get fitted with a prosthetic that doesn’t feel, it’s almost like you’re always feeling numb and cannot control things very well,” said Prof Tee. “If we have a skin that can make prosthetics smarter, we can restore motor functions, productivity and general quality of life for these people.”

In human skin, receptors send information about touch to the brain, which enables humans to intuitively sense touch.

When the Aces is attached to a prosthetic hand, a neural implant must be inserted into the patient’s arm so that the brain can detect the sense of touch from the e-skin.

The team will work with prosthetics researchers abroad to conduct a clinical trial of the e-skin with a patient using an artificial hand.

The Aces has also been designed for robots. “Robots need to have a sense of touch to interact better with humans, but robots today still cannot feel objects very well,” said Prof Tee.

For instance, a search-and-rescue robot digging through rubble will need sensation to know that it has to push away rocks and concrete to rescue a trapped person.

E-skin such as the Aces can be commercialised for robots within a year or two, Prof Tee said, but it will take five to 10 years for prosthetics that sense touch to reach patients, to allow for clinical trials.

https://www.straitstimes.com/singapore/prosthetics-can-sense-touch-with-electronic-skin-invention

Advertisements

Beauty might only be skin deep, but for those wondering how to keep that skin young, scientists may have found an answer in the form of a protein that encourages cell competition.

The prosaically named COL17A1 might not sound like a fountain of youth, but the new study suggests it does the heavy lifting when it comes to keeping skin intact and unimpaired.

The protein works by encouraging cell competition, a key process to maintain tissue fitness. That effectively “drives out” weaker cells while encouraging replication of stronger ones.

“Damaged or stressed stem cells can be selectively eliminated by intact stem cells every day in our skin,” said Emi Nishimura, a professor at the Tokyo Medical and Dental University’s Stem Cell Biology department, who led the research.

But ageing results in a depletion of COL17A1, as do familiar enemies of youthful skin, like UV radiation and other stress factors.

And when that happens, weaker cells replicate, leaving the skin thinner, more prone to damage and slower to heal.

The research published Thursday in the journal Nature is based on investigations using mice tails, which share many of the same characteristics as human skin.

After confirming the importance of COL17A1, the team decided to investigate whether they could stimulate the protein once it was depleted—effectively looking for compounds that could kickstart the anti-ageing process in skin.

They isolated two chemical compounds—Y27632 and apocynin—and tested both on skin cells, with positive results.

“Application of these drugs to full-thickness skin wounds significantly promoted wound repair,” the study said.

The two compounds point to ways of “facilitating skin regeneration and reducing skin ageing,” the study added.

In a review of the study commissioned by Nature, two professors from the University of Colorado said cell competition had previously only been studied extensively in fruit flies.

The research “provides evidence that healthy cells in mammals can also efficiently repopulate adult tissues, replacing unfit or damaged cells,” wrote professors Ganna Bilousova and James DeGregori.

And they said the research offered “proof-of-principle” that the two chemical compounds could combat ageing.

“Future studies are needed to determine the mechanisms of cell competition in other tissues, and to identify compounds capable of reversing ageing in other organs,” they said.

Nishimura told AFP that the work could eventually lead to products like creams or tablets that could stop skin deterioration and promote repair.

“We are going to collaborate with pharmaceutical or cosmetic companies for the clinical use of the chemicals,” she said.

She said additional research would investigate whether the same process might also be at work in other parts of the body that have so-called epithelial cells like skin does.

“We are working on other epithelial organs as well to find out (whether) similar competition may underlie long-term tissue maintenance as well as organ ageing,” she said.

https://medicalxpress.com/news/2019-04-young-uncovers-protein-skin-youthful.html

By Lauren Sharkey

Melanoma is the deadliest form of skin cancer. With its incidence rates continuing to rise, researchers are looking for ways to spot it early on. A new laser device may be able to do so instantly.

“With skin cancer, there’s a saying that if you can spot it you can stop it — and that’s exactly what this probe is designed to do,” says Daniel Louie, a Ph.D. student at the University of British Columbia (UBC) in Canada.

Louie has helped design a low-cost device that can quickly detect cancerous skin cells.

Skin cancer is the most common cancer in the United States, according to the Centers for Disease Control and Prevention (CDC).

Typically split into two categories — melanoma and nonmelanoma — the condition can result in a series of complications if a person does not seek treatment.

While nonmelanoma cases may lead to disfigurement, melanoma can be deadly. Also, melanoma’s rates have been going up for the past 30 years, according to the American Cancer Society.

It is now one of the most common cancers in young adults, particularly young women.

How light waves detect cancer

Detecting the cancer early is essential for a good prognosis. One way to do so is using light waves. As these pass through objects, they scatter in a certain way. Louie used this principle to design a laser probe that could interpret these patterns within seconds.

“Because cancer cells are denser, larger, and more irregularly shaped than normal cells, they cause distinctive scattering in the light waves as they pass through,” he explains.

Researchers from UBC, BC Cancer, and the Vancouver Coastal Health Research Institute analyzed these light beam changes. They examined 69 lesions from 47 people at the Vancouver General Hospital Skin Care Centre in Canada.

This research — the results of which now appear in the Journal of Biomedical Optics — informed the probe’s design. Not only can it show the precise pattern of laser beams, but it can also very easily read them to detect the presence of cancer.

https://www.medicalnewstoday.com/articles/324690.php

By Ruth Williams

The sun’s ultraviolet (UV) radiation is a major cause of skin cancer, but it offers some health benefits too, such as boosting production of essential vitamin D and improving mood. A recent report in Cell adds enhanced learning and memory to UV’s unexpected benefits.

Researchers have discovered that, in mice, exposure to UV light activates a molecular pathway that increases production of the brain chemical glutamate, heightening the animals’ ability to learn and remember.

“The subject is of strong interest, because it provides additional support for the recently proposed theory of ultraviolet light’s regulation of the brain and central neuroendocrine system,” dermatologist Andrzej Slominski of the University of Alabama who was not involved in the research writes in an email to The Scientist.

“It’s an interesting and timely paper investigating the skin-brain connection,” notes skin scientist Martin Steinhoff of University College Dublin’s Center for Biomedical Engineering who also did not participate in the research. “The authors make an interesting observation linking moderate UV exposure to . . . [production of] the molecule urocanic acid. They hypothesize that this molecule enters the brain, activates glutaminergic neurons through glutamate release, and that memory and learning are increased.”

While the work is “fascinating, very meticulous, and extremely detailed,” says dermatologist David Fisher of Massachusetts General Hospital and Harvard Medical School, “it does not imply that UV is actually good for you. . . . Across the board, for humanity, UV really is dangerous.”

Wei Xiong of the University of Science and Technology of China who led the research did not set out to investigate the effects of UV light on the brain or the skin-brain connection. He stumbled upon his initial finding “almost accidentally,” he explains in an email to The Scientist. Xiong and his colleagues were using a mass spectrometry technique they had recently developed for analyzing the molecular contents of single neurons, when their results revealed the unexpected presence of urocanic acid—a little-known molecule produced in the skin in response to UV light.

“It was a surprise because we checked through all the literature and found no reports of the existence of this small molecule in the central nervous system,” writes Xiong.

With little information to go on, Xiong and his colleagues decided to see whether UV light could also boost levels of urocanic acid in the brain. They exposed shaved mice to a low-dose of UVB—responsible for sunburn in humans—for 2 hours, then performed mass spectrometry on the animals’ individual brain cells. Sure enough, levels of urocanic acid increased in neurons of the animals exposed to the light, but not in those of control animals.

Urocanic acid can absorb UV rays and, as a result, may be able to protect skin against the sun’s harmful effects. But in the liver and other peripheral tissues, the acid is also known to be an intermediate molecule generated in the metabolic pathway that converts histidine to glutamate. Given glutamate’s role in the brain as an excitatory neurotransmitter, Xiong and his colleagues were interested to test whether the observed UV-dependent increase in urocanic acid in neurons might be coupled with increased glutamate production. It was.

Next, the team showed that UV light enhanced electrical transmission between glutaminergic neurons in brain slices taken from animals exposed to UV, but not in those from control animals. This UV-induced effect was prevented when the researchers inhibited activity of the enzyme urocanase, which converts urocanic acid to glutamate, indicating that the acid was indeed the mediator of the UV-induced boost in glutaminergic activity.

Lastly, the team showed that mice exposed to UV performed better in motor learning and recognition memory tasks than their unexposed counterparts. And, as before, treating the animals with a urocanase inhibitor prevented the UV-induced improvements in learning and memory. Administering urocanic acid directly to animals not exposed to ultraviolet light also spurred similar learning and memory improvements to those achieved with UV exposure.

Whether the results obtained in mice, which are nocturnal and rarely see the sun, will hold true in humans is yet to be determined. But, Fisher says, if the results do hold, the finding that urocanic acid alone can enhance learning and memory might suggest “a way to utilize this information to benefit people without exposing them to the damaging effects of UV.”

H. Zhu et al., “Moderate UV exposure enhances learning and memory by promoting a novel glutamate biosynthetic pathway in the brain,” Cell, doi: 10.1016/j.cell.2018.04.014, 2018.

https://www.the-scientist.com/?articles.view/articleNo/54603/title/Could-a-Dose-of-Sunshine-Make-You-Smarter-/

ndividuals with acne have a significantly increased risk for depression within the first 5 years after receiving an acne diagnosis, according to a recent study.

For their study, Dr Isabelle Vallerand, of the University of Calgary in Canada, and colleagues obtained and evaluated patient data from the 1986-2012 Health Improvement Network (THIN) in the United Kingdom.

Results of the analysis revealed that individuals with acne had a 63% higher risk for depression within 1 year after diagnosis compared with individuals without acne, thus indicating the importance of evaluating patients with acne for symptoms of depression.

“This study highlights an important link between skin disease and mental illness,” Dr Vallerand said in a press release.

“Given the risk of depression was highest in the period right after the first time a patient presented to a physician for acne concerns, it shows just how impactful our skin can be towards our overall mental health.”

—Christina Vogt

Reference:

Vallerand IA, Lewinson RT, Parsons LM, et al. Risk of depression among patients with acne in the U.K.: a population-based cohort study [published online February 7, 2018]. Brit J Dermatol. doi:10.1111/bjd.16099.

https://www.consultant360.com/exclusives/acne-inflates-depression-risk-63