Posts Tagged ‘plastic’


The company behind the breakthough, Carbios, has partnered with major companies including Pepsi and L’Oréal. Photograph: Mario Anzuoni/Reuters

A mutant bacterial enzyme that breaks down plastic bottles for recycling in hours has been created by scientists.

The enzyme, originally discovered in a compost heap of leaves, reduced the bottles to chemical building blocks that were then used to make high-quality new bottles. Existing recycling technologies usually produce plastic only good enough for clothing and carpets.

The company behind the breakthrough, Carbios, said it was aiming for industrial-scale recycling within five years. It has partnered with major companies including Pepsi and L’Oréal to accelerate development. Independent experts called the new enzyme a major advance.

Billions of tonnes of plastic waste have polluted the planet, from the Arctic to the deepest ocean trench, and pose a particular risk to sea life. Campaigners say reducing the use of plastic is key, but the company said the strong, lightweight material was very useful and that true recycling was part of the solution.

The new enzyme was revealed in research published on Wednesday in the journal Nature. The work began with the screening of 100,000 micro-organisms for promising candidates, including the leaf compost bug, which was first discovered in 2012.

“It had been completely forgotten, but it turned out to be the best,” said Prof Alain Marty at the Université de Toulouse, France, the chief science officer at Carbios.

The scientists analysed the enzyme and introduced mutations to improve its ability to break down the PET plastic from which drinks bottles are made. They also made it stable at 72C, close to the perfect temperature for fast degradation.

The team used the optimised enzyme to break down a tonne of waste plastic bottles, which were 90% degraded within 10 hours. The scientists then used the material to create new food-grade plastic bottles.

Carbios has a deal with the biotechnology company Novozymes to produce the new enzyme at scale using fungi. It said the cost of the enzyme was just 4% of the cost of virgin plastic made from oil.

Waste bottles also have to be ground up and heated before the enzyme is added, so the recycled PET will be more expensive than virgin plastic. But Martin Stephan, the deputy chief executive at Carbios, said existing lower-quality recycled plastic sells at a premium due to a shortage of supply.

“We are the first company to bring this technology on the market,” said Stephan. “Our goal is to be up and running by 2024, 2025, at large industrial scale.”

He said a reduction in plastic use was one part of solving the waste problem. “But we all know that plastic brings a lot of value to society, in food, medical care, transportation. The problem is plastic waste.” Increasing the collection of plastic waste was key, Stephan said, with about half of all plastic ending up in the environment or in landfill.

Another team of scientists revealed in 2018 that they had accidentally created an enzyme that breaks down plastic drinks bottles. One of the team behind this advance, Prof John McGeehan, the director of the Centre for Enzyme Innovation at the University of Portsmouth, said Carbios was the leading company engineering enzymes to break down PET at large scale and that the new work was a major advance.

“It makes the possibility of true industrial-scale biological recycling of PET a possibility. This is a very large advance in terms of speed, efficiency and heat tolerance,” McGeehan said. “It represents a significant step forward for true circular recycling of PET and has the potential to reduce our reliance on oil, cut carbon emissions and energy use, and incentivise the collection and recycling of waste plastic.”

Scientists are also making progress in finding biological ways to break down other major types of plastic. In March, German researchers revealed a bug that feasts on toxic polyurethane, while earlier work has shown that wax moth larvae – usually bred as fish bait – can eat up polythene bags.

https://www.theguardian.com/environment/2020/apr/08/scientists-create-mutant-enzyme-that-recycles-plastic-bottles-in-hours?CMP=oth_b-aplnews_d-1

Coronavirus could live up to three days on a plastic or stainless steel doorknob, researchers found.

A preliminary study released last week also showed that the virus could be aerosolized, meaning it could potentially live in the air. It could live up to three days on some surfaces.

Though it’s widely acknowledged that coronavirus could be spread via respiratory droplet — the result of coughing or sneezing — there’s not much information yet on how the virus lives on surfaces or in the air.

The new research could inform cleaning recommendations and other measures taken to reduce community spread.

The U.S. Centers for Disease Control and Prevention recommend routine cleaning of high-touch surfaces, like door handles, high-backed chairs, light switches and remote controls.

The study, released last week, is not yet peer-reviewed. That means that other experts have not had the chance to check the quality of the research, and its not advised that doctors use it in a clinical setting. But as people try to cope with the disease, it’s being widely read.

Here’s how long the study indicated the virus could live on various surfaces:

The air: Researchers found the virus could be detected in aerosols up to 4 hours after it was sprayed.

Copper: Up to 4 hours

Cardboard: Up to 24 hours

Plastic: 2-3 days

Stainless steel: 2-3 days

https://www.cleveland.com/news/2020/03/coronavirus-update-virus-could-live-up-to-24-hours-on-cardboard-3-days-on-plastic-and-steel-study-says.html?utm_source=Newsletter&utm_medium=Newsletter%20-%20Wake%20Up&utm_campaign=Newsletter:%20The%20Wake%20Up

system_001_launch_4-8c0ffa987ec559156057b8fd87e8dbedae09acfe-s800-c85
A nearly 2,000-foot-long tube is towed offshore from San Francisco Bay on Saturday. It’s a giant garbage collector and the brainchild of 24-year-old Boyan Slat, who aims to remove 90 percent of ocean plastic by 2040.

by LAUREL WAMSLEY

We humans have deposited a huge amount of plastic in Earth’s waters. There are now five garbage-filled gyres in the world’s oceans — the largest and most notorious being the Great Pacific Garbage Patch, with its estimated 1.8 trillion pieces of plastic, spread across an area twice the size of Texas.

One of the people trying to figure out how to clean up the ocean is Boyan Slat, a 24-year-old Dutch social entrepreneur who has been working to invent a solution since he was 17. His idea — for a giant floating system that would corral the plastic so it can be scooped out — is on the verge of reality.

He founded a nonprofit called The Ocean Cleanup and picked up a major environmental award from the United Nations along the way. Tech investors including Peter Thiel and Marc Benioff got behind his go-big ethos; a reported $35 million total has been raised.

On Saturday, a vessel that usually tows oil rigs instead towed Slat’s giant garbage-catcher some 300 miles offshore from San Francisco Bay. For two weeks, engineers will monitor how the system handles the battering waves in the Pacific before towing it 1,100 more miles to the patch.

The system’s centerpiece is a nearly 2,000-foot-long plastic tube with a 10-foot skirt attached beneath, forming a U-shaped barrier designed to be propelled by wind and waves. Its aim is to collect plastic as it floats — and then every few months, a support vessel would come by to retrieve the plastic, like an oceanic garbage truck. The plastic would then be transported back to land for recycling.

If it works, The Ocean Cleanup plans to deploy a fleet of 60 such devices, which the group projects can remove half the plastic in the Great Pacific Garbage Patch in five years’ time.

But will it actually work? Slat doesn’t know.

His team has changed its concept over time, switching from a moored system to a drifting one, in order to act more like the plastic it’s trying to catch. They tested a prototype on the North Sea but say the Pacific will be the real challenge.

“We believe that every risk that we can eliminate in advance we have been able to eliminate,” he said in a video prior to Saturday’s launch. “But that doesn’t mean that all risks have been eliminated. Truly, the only way to prove that we can rid the oceans of plastic is to actually go out there and deploy the world’s first ocean-cleaning system.”

The Ocean Cleanup hopes to reduce the amount of plastics in the world’s oceans by at least 90 percent by 2040. But many experts on plastic pollution have expressed concerns about whether the project will be effective.

For one thing, most of the plastic that ends up in the ocean doesn’t end up in these garbage gyres.

“Based on the latest math, we think that about 8 million metric tons of plastic is flowing in to the ocean from land around the world,” says George Leonard, chief scientist at Ocean Conservancy. And he says that only around 3 percent to 5 percent of that total amount of plastic actually winds up in the gyres.

“So if you want to clean up the ocean,” Leonard says, “it may in fact be that the open ocean is not the place to look.”

Part of the issue is that not all plastic is buoyant. A lot of it sinks immediately — and thus won’t be captured by this floating boom, said Eben Schwartz, marine debris program manager for the California Coastal Commission.

“It would be wonderful if we can clean up the surface of the gyre, but since so much more of the trash in the ocean actually doesn’t end up on the surface of the gyre, it’s even more critical that we address where it’s coming from and try to stop it at its source,” Schwartz recently told NPR’s Here and Now.

Then there’s the question of whether the project might cause unintended environmental consequences. Specifically: Can you capture plastics without ensnaring marine life?

“We know from the fishing industry that if you put any kind of structure in the open ocean, it will attract a whole community of animals, both large and small, to that particular piece of structure,” Leonard says.

Fishermen sometimes create fish aggregating devices (FADs) that intentionally create little floating ecosystems to attract fish. “There’s a worry that this could become a very large FAD and attract a whole number of larger fish and marine mammals and seabirds that might be impacted by it,” he says.

Plus, The Ocean Cleanup’s system is made of high-density polyethylene, a kind of plastic. So, what if it becomes part of the problem it’s trying to solve?

“I sort of wonder what kinds of microplastics this thing is going to be generating on its own, assuming that it’s even functioning exactly as designed,” oceanographer Kara Lavender Law of the Sea Education Association told Wired. And if the boom gets busted in a big storm, well: “If it’s shedding nano-size particles and then gets smashed into 200-meter-long pieces, you’re really covering the whole size range there.”

And then there’s the worry that a big, expensive project like The Ocean Cleanup diverts money and attention away from other efforts that are known to be effective — such as waste management policies to keep the garbage from getting into the ocean in the first place.

A 2015 study found that China, Indonesia, the Philippines, Vietnam, Sri Lanka and Thailand were the leading sources of plastic waste in the world’s oceans.

“The science points to about a half a dozen countries in Southeast Asia which are rapidly developing economies that are heavily reliant on plastic, and lack the kind of waste management infrastructure that I think many of us in the U.S. take for granted,” Leonard says.

He points to one low-tech way to help fight plastics in the ocean: Pick up trash in your own local waterways. His organization’s annual International Coastal Cleanup takes place Sept. 15, when he says nearly a million people are expected to work to remove some 20 million pounds of trash from beaches and waterways around the world.

Leonard says the Ocean Conservancy is skeptical that the giant trash collector will work, “but we’re being enthusiastic, and we hope it does.”

“The ocean really needs all the help it can get.”

https://www.npr.org/2018/09/11/646724291/a-massive-floating-boom-is-supposed-to-clean-up-the-pacific-can-it-work


Small plastic fragments that have accumulated in the marine environment following decades of pollution can cause significant issues for marine organisms that ingest them, including inflammation, reduced feeding and weight-loss.

By Conn Hastings

A new study sheds light on the magnitude of microplastic pollution in our oceans. The study, published today in open-access journal Frontiers in Marine Science, found microplastics in the stomachs of nearly three out of every four mesopelagic fish caught in the Northwest Atlantic — one of the highest levels globally. These findings are worrying, as the affected fish could spread microplastics throughout the ocean. The fish are also prey for fish eaten by humans, meaning that microplastics could indirectly contaminate our food supply through the transfer of associated microplastic toxins.

“Microplastic pollution has been in the news recently, with several governments planning a ban on microbeads used in cosmetics and detergents,” says Alina Wieczorek from the National University of Ireland, Galway and lead author of the study. “The high ingestion rate of microplastics by mesopelagic fish that we observed has important consequences for the health of marine ecosystems and biogeochemical cycling in general.”

Microplastics are small plastic fragments that have accumulated in the marine environment following decades of pollution. These fragments can cause significant issues for marine organisms that ingest them, including inflammation, reduced feeding and weight-loss. Microplastic contamination may also spread from organism to organism when prey is eaten by predators. Since the fragments can bind to chemical pollutants, these associated toxins could accumulate in predator species.

Mesopelagic fish serve as a food source for a large variety of marine animals, including tuna, swordfish, dolphins, seals and sea birds. Typically living at depths of 200-1,000 meters, these fish swim to the surface at night to feed then return to deeper waters during the day. Through these vertical movements, mesopelagic fish play a key role in the cycling of carbon and nutrients from the surface to the deep sea — a process known as biogeochemical cycling. This means they could spread microplastic pollution throughout the marine ecosystem, by carrying microplastics from the surface down to deeper waters, affecting deep-sea organisms.

Despite their important role in marine ecosystems, mesopelagic fish have been relatively understudied in the context of microplastics. To investigate this further, Wieczorek and colleagues set out to catch fish in a remote area of the Northwest Atlantic Ocean: an eddy (whirlpool) off the coast of Newfoundland.

“These fish inhabit a remote area, so theoretically they should be pretty isolated from human influences, such as microplastics. However, as they regularly migrate to the surface, we thought that they may ingest microplastics there,” explains Wieczorek.

The researchers caught mesopelagic fish at varying depths, then examined their stomachs for microplastics back in the lab. They used a specialized air filter so as not to introduce airborne plastic fibers from the lab environment.

The team found a wide array of microplastics in the fish stomachs — with a whopping 73% of the fish having ingested the pollutants. “We recorded one of the highest frequencies of microplastics among fish species globally,” says Wieczorek. “In particular, we found high levels of plastic fibers such as those used in textiles.”

As the researchers were extremely careful to exclude contamination with fibers from the air, they are confident that the fish had ingested the fibers in the sea. Finding high levels of fibers in the fish is significant, as some studies investigating microplastics in fish have dismissed such fibers as contaminants from the lab environment, meaning their role as a pollutant may have been underestimated.

The researchers plan further studies to learn more about how these fish are ingesting and spreading microplastics. “It will be particularly interesting to see whether the fish ingest these microplastics directly as mistaken prey items, or whether they ingest them through eating prey species, which have previously ingested the microplastics,” says Wieczorek.

High levels of microplastics found in Northwest Atlantic fish