Posts Tagged ‘Parkinson’s disease’


By Alan Mozes

People with attention-deficit/hyperactivity disorder (ADHD) may be more than twice as likely to develop an early onset form of Parkinson’s, new research warns.

What’s more, among “those ADHD patients who had a record of being treated with amphetamine-like drugs — especially Ritalin [methylphenidate] — the risk dramatically increased, to between eight- to nine-fold,” said senior study author Glen Hanson.

But his team did not prove that ADHD or its medications actually caused Parkinson’s risk to rise, and one ADHD expert noted that the absolute risk of developing Parkinson’s remains very small.

For the study, researchers analyzed nearly 200,000 Utah residents. All had been born between 1950 and 1992, with Parkinson’s onset tracked up until the age of 60.

Prior to any Parkinson’s diagnosis, roughly 32,000 had been diagnosed with ADHD.

Hanson, a professor of pharmacology and toxicology at the University of Utah, said that ADHD patients were found to be “2.4 times more likely to develop Parkinson’s disease-like disorders prior to the age of 50 to 60 years,” compared with those with no history of ADHD. That finding held up even after accounting for a number of influential factors, including smoking, drug and alcohol abuse, and other psychiatric disorders.

“Although we cannot accurately say how much time elapsed between ADHD and [a] Parkinson’s-like disorder diagnosis, it was probably between 20 to 50 years,” he said.

As to what might explain the link, Hanson said that both ADHD and most forms of Parkinson’s source back to a “functional disorder of central nervous system dopamine pathways.”

In addition, Hanson said that “the drugs used to treat ADHD apparently work because of their profound effects on the activity of these dopamine pathways.” Theoretically, the treatment itself might trigger a metabolic disturbance, promoting dopamine pathway degeneration and, ultimately, Parkinson’s, he explained.

Still, Hanson pointed out that, for now, “we are not able to determine if the increased risk associated with stimulant use is due to the presence of the drug or the severity of the ADHD,” given that those treated with ADHD drugs tend to have more severe forms of the disorder.

And while demonstrating “a very strong association” between ADHD and Parkinson’s risk, the findings are preliminary, the study authors added.

Also, the absolute risk of developing Parkinson’s remained low, even in the most pessimistic scenario.

For example, the findings suggest that the risk of developing early onset Parkinson’s before the age of 50 would be eight or nine people out of every 100,000 with ADHD. This compares with one or two out of every 100,000 among those with no history of ADHD, the researchers said.

But the scientists noted that the results should raise eyebrows, because Parkinson’s primarily strikes people over the age of 60. Given the age range of those tracked so far in the study, Hanson said that his team was not yet able to ascertain Parkinson’s risk among ADHD patients after the age of 60.

Hanson also pointed out that because ADHD was only first diagnosed in the 1960s, only about 1.5 percent of the people in the study had an ADHD diagnosis, despite current estimates that peg ADHD prevalence at 10 percent. That suggests that the current findings may underestimate the scope of the problem.

“Clearly, there are some critical questions left to be answered concerning what is the full impact of this increased risk,” Hanson said.

Dr. Andrew Adesman is chief of developmental and behavioral pediatrics at Cohen Children’s Medical Center of New York with Northwell Health in New York City. He was not involved with the study and said the findings “surprised” him.

But, “we need to keep in mind that this study needs to be replicated and that the incidence of these conditions was very low, even among those with ADHD,” Adesman said. “The reality is that this would not affect 99.99 percent of individuals with ADHD.”

Meanwhile, Adesman said, “given that this study needs to be replicated, given that it is unclear whether ADHD medications further increase the risks of Parkinson’s, and given the very low risk in an absolute sense, I believe individuals with ADHD should not be hesitant to pursue or continue medical treatment for their ADHD.”

The report was published online Sept. 12 in the journal Neuropsychopharmacology.

Glen Hanson, DDS, Ph.D., vice dean and professor, pharmacology, School of Dentistry, University of Utah, Salt Lake City; Andrew Adesman, M.D., chief, developmental and behavioral pediatrics, Steven & Alexandra Cohen Children’s Medical Center of New York, Northwell Health, New York City; Sept. 12, 2018, Neuropsychopharmacology, online



By Anne Trafton

Dopamine, a signaling molecule used throughout the brain, plays a major role in regulating our mood, as well as controlling movement. Many disorders, including Parkinson’s disease, depression, and schizophrenia, are linked to dopamine deficiencies.

MIT neuroscientists have now devised a way to measure dopamine in the brain for more than a year, which they believe will help them to learn much more about its role in both healthy and diseased brains.

“Despite all that is known about dopamine as a crucial signaling molecule in the brain, implicated in neurologic and neuropsychiatric conditions as well as our abilty to learn, it has been impossible to monitor changes in the online release of dopamine over time periods long enough to relate these to clinical conditions,” says Ann Graybiel, an MIT Institute Professor, a member of MIT’s McGovern Institute for Brain Research, and one of the senior authors of the study.

Michael Cima, the David H. Koch Professor of Engineering in the Department of Materials Science and Engineering and a member of MIT’s Koch Institute for Integrative Cancer Research, and Rober Langer, the David H. Koch Institute Professor and a member of the Koch Institute, are also senior authors of the study. MIT postdoc Helen Schwerdt is the lead author of the paper, which appears in the Sept. 12 issue of Communications Biology.

Long-term sensing

Dopamine is one of many neurotransmitters that neurons in the brain use to communicate with each other. Traditional systems for measuring dopamine — carbon electrodes with a shaft diameter of about 100 microns — can only be used reliably for about a day because they produce scar tissue that interferes with the electrodes’ ability to interact with dopamine.

In 2015, the MIT team demonstrated that tiny microfabricated sensors could be used to measure dopamine levels in a part of the brain called the striatum, which contains dopamine-producing cells that are critical for habit formation and reward-reinforced learning.

Because these probes are so small (about 10 microns in diameter), the researchers could implant up to 16 of them to measure dopamine levels in different parts of the striatum. In the new study, the researchers wanted to test whether they could use these sensors for long-term dopamine tracking.

“Our fundamental goal from the very beginning was to make the sensors work over a long period of time and produce accurate readings from day to day,” Schwerdt says. “This is necessary if you want to understand how these signals mediate specific diseases or conditions.”

To develop a sensor that can be accurate over long periods of time, the researchers had to make sure that it would not provoke an immune reaction, to avoid the scar tissue that interferes with the accuracy of the readings.

The MIT team found that their tiny sensors were nearly invisible to the immune system, even over extended periods of time. After the sensors were implanted, populations of microglia (immune cells that respond to short-term damage), and astrocytes, which respond over longer periods, were the same as those in brain tissue that did not have the probes inserted.

In this study, the researchers implanted three to five sensors per animal, about 5 millimeters deep, in the striatum. They took readings every few weeks, after stimulating dopamine release from the brainstem, which travels to the striatum. They found that the measurements remained consistent for up to 393 days.

“This is the first time that anyone’s shown that these sensors work for more than a few months. That gives us a lot of confidence that these kinds of sensors might be feasible for human use someday,” Schwerdt says.

Paul Glimcher, a professor of physiology and neuroscience at New York University, says the new sensors should enable more researchers to perform long-term studies of dopamine, which is essential for studying phenomena such as learning, which occurs over long time periods.

“This is a really solid engineering accomplishment that moves the field forward,” says Glimcher, who was not involved in the research. “This dramatically improves the technology in a way that makes it accessible to a lot of labs.”

Monitoring Parkinson’s

If developed for use in humans, these sensors could be useful for monitoring Parkinson’s patients who receive deep brain stimulation, the researchers say. This treatment involves implanting an electrode that delivers electrical impulses to a structure deep within the brain. Using a sensor to monitor dopamine levels could help doctors deliver the stimulation more selectively, only when it is needed.

The researchers are now looking into adapting the sensors to measure other neurotransmitters in the brain, and to measure electrical signals, which can also be disrupted in Parkinson’s and other diseases.

“Understanding those relationships between chemical and electrical activity will be really important to understanding all of the issues that you see in Parkinson’s,” Schwerdt says.

The research was funded by the National Institute of Biomedical Imaging and Bioengineering, the National Institute of Neurological Disorders and Stroke, the Army Research Office, the Saks Kavanaugh Foundation, the Nancy Lurie Marks Family Foundation, and Dr. Tenley Albright.

by Judy George

Retinal thinning was linked to dopaminergic neuronal atrophy in a cross-sectional analysis, raising the possibility that it could be a way to detect pathologic changes in early Parkinson’s disease (PD) patients, researchers said.

Drug-naïve patients with early Parkinson’s showed retinal thinning as measured by optical coherence tomography (OCT) that correlated with both disease severity and nigral dopaminergic degeneration, reported Jee-Young Lee, MD, PhD, of the Seoul National University Boramae Medical Center, and colleagues in Neurology.

“Our study is the first to show a link between the thinning of the retina and a known sign of the progression of the disease — the loss of brain cells that produce dopamine,” Lee said in a statement.

“We also found the thinner the retina, the greater the severity of disease. These discoveries may mean that neurologists may eventually be able to use a simple eye scan to detect Parkinson’s disease in its earliest stages, before problems with movement begin.”

Retinal pathology has been tied to other neurodegenerative disorders including dementia. In previous studies, retinal nerve fiber layer thickness has been linked to Parkinson’s disease, and OCT is a potential PD biomarker.

The search for a definitive Parkinson’s biomarker has been extensive and includes clinical (anosmia; REM behavior disorder), genetic (GBA mutation; LRRK2 mutation), and biochemical (blood and cerebrospinal fluid) techniques, along with positron emission tomography (PET), magnetic resonance imaging (MRI), and single photon emission computed tomography (SPECT) imaging.

No biomarker has been validated for clinical practice, noted Jamie Adams, MD, of the University of Rochester Medical Center in New York, and Chiara La Morgia, MD, PhD, of the University of Bologna in Italy, in an accompanying editorial: “Because of the complexity of the disease, combining biomarkers from different categories is likely the best strategy to accurately predict PD status and progression.”

In this analysis, Lee and colleagues studied 49 Parkinson’s patients with an average age of 69, along with 54 age-matched controls, including only early-stage, drug-naïve PD patients without ophthalmologic disease.

The researchers used high-resolution OCT to measure retinal nerve fiber layer thickness, microperimetry to measure retinal function, and dopamine transporter analysis to measure N(3-[18F]fluoropropyl)-2-carbomethoxy-3-(4-iodophenyl) nortropane uptake in the basal ganglia. Retinal layer thickness and volume were measured and compared in PD patients and controls.

Retinal thinning was found in the inferior and temporal perifoveal sectors of the PD patients, particularly the inner plexiform and ganglion cell layers, along with an association between retinal thinning and dopaminergic loss in the left substantia nigra. The team also reported an inverse association between inner retinal thickness in the inferior perifoveal sector and disease severity (Hoehn and Yahr stage), and a positive correlation between macular sensitivity and retinal layer thickness.

“Overall, these data support the presence of an association between retinal thinning and dopaminergic loss in PD,” said Adams and La Morgia. “Inner retinal thinning in individuals with PD has been reported in previous studies, but this is the first study that demonstrates a correlation between inner retinal thinning and nigral dopaminergic loss.”

“These findings may point to a pathologic connection between the retina and basal ganglia in PD and are in line with previous studies reporting asymmetric retinal nerve fiber layer loss, more evident in the eye contralateral to the most affected body side.”

The results need to be interpreted with caution, Lee and co-authors noted. Retina analysis was limited to the macular area in this research. Studies with larger numbers of Parkinson’s patients are needed to confirm the findings. And this study was a cross-sectional analysis, so correlations between retinal changes and PD severity need to be established over time.

But if the findings are confirmed, “retina scans may not only allow earlier treatment of Parkinson’s disease, but more precise monitoring of treatments that could slow progression of the disease as well,” Lee said.

Illustration by Paweł Jońca

by Helen Thomson

In March 2015, Li-Huei Tsai set up a tiny disco for some of the mice in her laboratory. For an hour each day, she placed them in a box lit only by a flickering strobe. The mice — which had been engineered to produce plaques of the peptide amyloid-β in the brain, a hallmark of Alzheimer’s disease — crawled about curiously. When Tsai later dissected them, those that had been to the mini dance parties had significantly lower levels of plaque than mice that had spent the same time in the dark.

Tsai, a neuroscientist at Massachusetts Institute of Technology (MIT) in Cambridge, says she checked the result; then checked it again. “For the longest time, I didn’t believe it,” she says. Her team had managed to clear amyloid from part of the brain with a flickering light. The strobe was tuned to 40 hertz and was designed to manipulate the rodents’ brainwaves, triggering a host of biological effects that eliminated the plaque-forming proteins. Although promising findings in mouse models of Alzheimer’s disease have been notoriously difficult to replicate in humans, the experiment offered some tantalizing possibilities. “The result was so mind-boggling and so robust, it took a while for the idea to sink in, but we knew we needed to work out a way of trying out the same thing in humans,” Tsai says.

Scientists identified the waves of electrical activity that constantly ripple through the brain almost 100 years ago, but they have struggled to assign these oscillations a definitive role in behaviour or brain function. Studies have strongly linked brainwaves to memory consolidation during sleep, and implicated them in processing sensory inputs and even coordinating consciousness. Yet not everyone is convinced that brainwaves are all that meaningful. “Right now we really don’t know what they do,” says Michael Shadlen, a neuroscientist at Columbia University in New York City.

Now, a growing body of evidence, including Tsai’s findings, hint at a meaningful connection to neurological disorders such as Alzheimer’s and Parkinson’s diseases. The work offers the possibility of forestalling or even reversing the damage caused by such conditions without using a drug. More than two dozen clinical trials are aiming to modulate brainwaves in some way — some with flickering lights or rhythmic sounds, but most through the direct application of electrical currents to the brain or scalp. They aim to treat everything from insomnia to schizophrenia and premenstrual dysphoric disorder.

Tsai’s study was the first glimpse of a cellular response to brainwave manipulation. “Her results were a really big surprise,” says Walter Koroshetz, director of the US National Institute of Neurological Disorders and Stroke in Bethesda, Maryland. “It’s a novel observation that would be really interesting to pursue.”

A powerful wave

Brainwaves were first noticed by German psychiatrist Hans Berger. In 1929, he published a paper describing the repeating waves of current he observed when he placed electrodes on people’s scalps. It was the world’s first electroencephalogram (EEG) recording — but nobody took much notice. Berger was a controversial figure who had spent much of his career trying to identify the physiological basis of psychic phenomena. It was only after his colleagues began to confirm the results several years later that Berger’s invention was recognized as a window into brain activity.

Neurons communicate using electrical impulses created by the flow of ions into and out of each cell. Although a single firing neuron cannot be picked up through the electrodes of an EEG, when a group of neurons fires again and again in synchrony, it shows up as oscillating electrical ripples that sweep through the brain.

Those of the highest frequency are gamma waves, which range from 25 to 140 hertz. People often show a lot of this kind of activity when they are at peak concentration. At the other end of the scale are delta waves, which have the lowest frequency — around 0.5 to 4 hertz. These tend to occur in deep sleep (see ‘Rhythms of the mind’).

At any point in time, one type of brainwave tends to dominate, although other bands are always present to some extent. Scientists have long wondered what purpose, if any, this hum of activity serves, and some clues have emerged over the past three decades. For instance, in 1994, discoveries in mice indicated that the distinct patterns of oscillatory activity during sleep mirrored those during a previous learning exercise. Scientists suggested that these waves could be helping to solidify memories.

Brainwaves also seem to influence conscious perception. Randolph Helfrich at the University of California, Berkeley, and his colleagues devised a way to enhance or reduce gamma oscillations of around 40 hertz using a non-invasive technique called transcranial alternating current stimulation (tACS). By tweaking these oscillations, they were able to influence whether a person perceived a video of moving dots as travelling vertically or horizontally.

The oscillations also provide a potential mechanism for how the brain creates a coherent experience from the chaotic symphony of stimuli hitting the senses at any one time, a puzzle known as the ‘binding problem’. By synchronizing the firing rates of neurons responding to the same event, brainwaves might ensure that the all of the relevant information relating to one object arrives at the correct area of the brain at exactly the right time. Coordinating these signals is the key to perception, says Robert Knight, a cognitive neuroscientist at the University of California, Berkeley, “You can’t just pray that they will self-organize.”

Healthy oscillations

But these oscillations can become disrupted in certain disorders. In Parkinson’s disease, for example, the brain generally starts to show an increase in beta waves in the motor regions as body movement becomes impaired. In a healthy brain, beta waves are suppressed just before a body movement. But in Parkinson’s disease, neurons seem to get stuck in a synchronized pattern of activity. This leads to rigidity and movement difficulties. Peter Brown, who studies Parkinson’s disease at the University of Oxford, UK, says that current treatments for the symptoms of the disease — deep-brain stimulation and the drug levodopa — might work by reducing beta waves.

People with Alzheimer’s disease show a reduction in gamma oscillations5. So Tsai and others wondered whether gamma-wave activity could be restored, and whether this would have any effect on the disease.

They started by using optogenetics, in which brain cells are engineered to respond directly to a flash of light. In 2009, Tsai’s team, in collaboration with Christopher Moore, also at MIT at the time, demonstrated for the first time that it is possible to use the technique to drive gamma oscillations in a specific part of the mouse brain6.

Tsai and her colleagues subsequently found that tinkering with the oscillations sets in motion a host of biological events. It initiates changes in gene expression that cause microglia — immune cells in the brain — to change shape. The cells essentially go into scavenger mode, enabling them to better dispose of harmful clutter in the brain, such as amyloid-β. Koroshetz says that the link to neuroimmunity is new and striking. “The role of immune cells like microglia in the brain is incredibly important and poorly understood, and is one of the hottest areas for research now,” he says.

If the technique was to have any therapeutic relevance, however, Tsai and her colleagues had to find a less-invasive way of manipulating brainwaves. Flashing lights at specific frequencies has been shown to influence oscillations in some parts of the brain, so the researchers turned to strobe lights. They started by exposing young mice with a propensity for amyloid build-up to flickering LED lights for one hour. This created a drop in free-floating amyloid, but it was temporary, lasting less than 24 hours, and restricted to the visual cortex.

To achieve a longer-lasting effect on animals with amyloid plaques, they repeated the experiment for an hour a day over the course of a week, this time using older mice in which plaques had begun to form. Twenty-four hours after the end of the experiment, these animals showed a 67% reduction in plaque in the visual cortex compared with controls. The team also found that the technique reduced tau protein, another hallmark of Alzheimer’s disease.

Alzheimer’s plaques tend to have their earliest negative impacts on the hippocampus, however, not the visual cortex. To elicit oscillations where they are needed, Tsai and her colleagues are investigating other techniques. Playing rodents a 40-hertz noise, for example, seems to cause a decrease in amyloid in the hippocampus — perhaps because the hippo-campus sits closer to the auditory cortex than to the visual cortex.

Tsai and her colleague Ed Boyden, a neuro-scientist at MIT, have now formed a company, Cognito Therapeutics in Cambridge, to test similar treatments in humans. Last year, they started a safety trial, which involves testing a flickering light device, worn like a pair of glasses, on 12 people with Alzheimer’s.

Caveats abound. The mouse model of Alzheimer’s disease is not a perfect reflection of the disorder, and many therapies that have shown promise in rodents have failed in humans. “I used to tell people — if you’re going to get Alzheimer’s, first become a mouse,” says Thomas Insel, a neuroscientist and psychiatrist who led the US National Institute of Mental Health in Bethesda, Maryland, from 2002 until 2015.

Others are also looking to test how manipulating brainwaves might help people with Alzheimer’s disease. “We thought Tsai’s study was outstanding,” says Emiliano Santarnecchi at Harvard Medical School in Boston, Massachusetts. His team had already been using tACS to stimulate the brain, and he wondered whether it might elicit stronger effects than a flashing strobe. “This kind of stimulation can target areas of the brain more specifically than sensory stimulation can — after seeing Tsai’s results, it was a no-brainer that we should try it in Alzheimer’s patients.”

His team has begun an early clinical trial in which ten people with Alzheimer’s disease receive tACS for one hour daily for two weeks. A second trial, in collaboration with Boyden and Tsai, will look for signals of activated microglia and levels of tau protein. Results are expected from both trials by the end of the year.

Knight says that Tsai’s animal studies clearly show that oscillations have an effect on cellular metabolism — but whether the same effect will be seen in humans is another matter. “In the end, it’s data that will win out,” he says.

The studies may reveal risks, too. Gamma oscillations are the type most likely to induce seizures in people with photosensitive epilepsy, says Dora Hermes, a neuroscientist at Stanford University in California. She recalls a famous episode of a Japanese cartoon that featured flickering red and blue lights, which induced seizures in some viewers. “So many people watched that episode that there were almost 700 extra visits to the emergency department that day.”

A brain boost

Nevertheless, there is clearly a growing excitement around treating neurological diseases using neuromodulation, rather than pharmaceuticals. “There’s pretty good evidence that by changing neural-circuit activity we can get improvements in Parkinson’s, chronic pain, obsessive–compulsive disorder and depression,” says Insel. This is important, he says, because so far, pharmaceutical treatments for neurological disease have suffered from a lack of specificity. Koroshetz adds that funding institutes are eager for treatments that are innovative, non-invasive and quickly translatable to people.

Since publishing their mouse paper, Boyden says, he has had a deluge of requests from researchers wanting to use the same technique to treat other conditions. But there are a lot of details to work out. “We need to figure out what is the most effective, non-invasive way of manipulating oscillations in different parts of the brain,” he says. “Perhaps it is using light, but maybe it’s a smart pillow or a headband that could target these oscillations using electricity or sound.” One of the simplest methods that scientists have found is neurofeedback, which has shown some success in treating a range of conditions, including anxiety, depression and attention-deficit hyperactivity disorder. People who use this technique are taught to control their brainwaves by measuring them with an EEG and getting feedback in the form of visual or audio cues.

Phyllis Zee, a neurologist at Northwestern University in Chicago, Illinois, and her colleagues delivered pulses of ‘pink noise’ — audio frequencies that together sound a bit like a waterfall — to healthy older adults while they slept. They were particularly interested in eliciting the delta oscillations that characterize deep sleep. This aspect of sleep decreases with age, and is associated with a decreased ability to consolidate memories.

So far, her team has found that stimulation increased the amplitude of the slow waves, and was associated with a 25–30% improvement in recall of word pairs learnt the night before, compared with a fake treatment7. Her team is midway through a clinical trial to see whether longer-term acoustic stimulation might help people with mild cognitive impairment.

Although relatively safe, these kinds of technologies do have limitations. Neurofeedback is easy to learn, for instance, but it can take time to have an effect, and the results are often short-lived. In experiments that use magnetic or acoustic stimulation, it is difficult to know precisely what area of the brain is being affected. “The field of external brain stimulation is a little weak at the moment,” says Knight. Many approaches, he says, are open loop, meaning that they don’t track the effect of the modulation using an EEG. Closed loop, he says, would be more practical. Some experiments, such as Zee’s and those involving neuro-feedback, already do this. “I think the field is turning a corner,” Knight says. “It’s attracting some serious research.”

In addition to potentially leading to treatments, these studies could break open the field of neural oscillations in general, helping to link them more firmly to behaviour and how the brain works as a whole.

Shadlen says he is open to the idea that oscillations play a part in human behaviour and consciousness. But for now, he remains unconvinced that they are directly responsible for these phenomena — referring to the many roles people ascribe to them as “magical incantations”. He says he fully accepts that these brain rhythms are signatures of important brain processes, “but to posit the idea that synchronous spikes of activity are meaningful, that by suddenly wiggling inputs at a specific frequency, it suddenly elevates activity onto our conscious awareness? That requires more explanation.”

Whatever their role, Tsai mostly wants to discipline brainwaves and harness them against disease. Cognito Therapeutics has just received approval for a second, larger trial, which will look at whether the therapy has any effect on Alzheimer’s disease symptoms. Meanwhile, Tsai’s team is focusing on understanding more about the downstream biological effects and how to better target the hippocampus with non-invasive technologies.

For Tsai, the work is personal. Her grandmother, who raised her, was affected by dementia. “Her confused face made a deep imprint in my mind,” Tsai says. “This is the biggest challenge of our lifetime, and I will give it all I have.”

After being stung by a parasitic wasp, the American cockroach loses control of its behavior, becoming host to the wasp’s egg. Days later, the hatchling consumes the cockroach alive. While this is a gruesome process for the cockroach, scientists now report in ACS’ journal Biochemistry the discovery of a new family of peptides in the wasp’s venom that could be key to controlling roach minds, and might even help researchers develop better Parkinson’s disease treatments.

Scientists have long studied venoms, such as that of the wasp, seeking out novel and potent molecules to treat disease, among other applications. In the case of the enigmatic wasp Ampulex compressa, it uses its venom in a two-pronged approach against the cockroach, with an initial sting to the thorax to paralyze the front legs and a subsequent sting directly to the brain. This second sting causes the roach first to vigorously groom itself, then to fall into a state of lethargy, allowing the wasp to do whatever it wants. This immobile state resembles symptoms of Parkinson’s disease, and both may be related to dysfunction in the dopamine pathway. In this study, Michael E. Adams and colleagues wanted to identify the ingredients in wasp venom that dictate this behavior.

The researchers milked wasps for their venom and then analyzed the components using liquid chromatography and mass spectrometry. They identified a new family of alpha-helical peptides and named them ampulexins. To test their function, the team injected the most abundant venom peptide into cockroaches. Afterward, the bugs needed, on average, a 13-volt electric shock to the foot to get them moving, while an average of 9 volts sufficed prior to the injection, suggesting the peptides help the wasp immobilize its prey. Future work will focus on identifying cellular targets of ampulexins, and potentially generating a useful animal model for the study of Parkinson’s disease treatments.

The authors acknowledge funding from the United States-Israel Binational Science Foundation, the University of California, Riverside Office of Research and Economic Development and the University of California Agricultural Experiment Station.

By Bradley J. Fikes

A diabetes drug developed by a San Diego biotech company from a venomous lizard’s saliva reduces Parkinson’s disease symptoms, according to a study published Thursday.

The placebo-controlled study of 62 patients found the drug, exenatide, provided statistically significant effectiveness in preserving motor control. It may actually slow down disease progression, although this has to be confirmed with more research.

For Parkinson’s patients, the trial represents stronger grounds to expect more effective treatments. For San Diego’s life science community, it represents another example of the benefits of original research and innovation.

The study was published in The Lancet by researchers led by Thomas Foltynie and Dilan Athauda, both of University College London in London, England. While the study wasn’t particularly large, with 62 patients, it was placebo-controlled, and is in line with a previous clinical study published in 2014.

Exenatide was found in Gila monster saliva by Dr. John Eng, an endocrinologist at Bronx Veterans Affairs Medical Center in New York. The venomous lizard, native to the Southwestern United States and northwestern Mexico, delivers excruciating pain with its bite.

San Diego’s Amylin Pharmaceuticals licensed the discovery in 1996. Further development yielded exenatide, sold under the brand name Byetta.

The drug became a hit, providing a major reason for Amylin’s 2012 purchase for $7 billion by Bristol-Myers Squibb. As for Amylin, the company was disbanded and no longer exists.

Exenatide/Byetta reduces insulin resistance in Type 2 diabetes, allowing for better control of blood glucose. There’s evidence that Parkinson’s disease is also related to problems with insulin signaling.

The new clinical study improves on the previous study because it is placebo-controlled, according to an accompanying commentary in The Lancet. But the study has limitations that prevent it from being considered definitive.

“Whether exenatide acts as a novel symptomatic agent or has neuroprotective effects on the underlying Parkinson’s disease pathology remains unclear, but Athauda and colleagues’ study opens up a new therapeutic avenue in treatment of Parkinson’s disease,” the commentary stated.

Christian Weyer, M.D., a former Amylin executive, said one of the most interesting parts of the study was exenatide’s potential for modifying the course of Parkinson’s disease. Weyer is now president of Chula Vista’s ProSciento, a clinical services provider.

Patients were measured on motor skills after getting 48 weeks of injections, either with exenatide or placebo. The treated group showed an advantage of 4 points on a 132-scale test, which was statistically significant.

Exenatide mimics the action of a hormone, and such drugs often show disease-modifying properties, said Weyer, who was Amylin’s Senior Vice President of Research and Development.

“It’s not conclusive that exenatide has the potential for disease-modification, but I was impressed by the fact that the endpoint of the test was in the off-medication period, so you actually assess whether there’s an effect even after the treatment had been stopped,” Weyer said.

Amylin had performed early preclinical research on exenatide for Parkinsons’ disease, Weyer said. The research was funded by a small grant from the Michael J. Fox Foundation.

In chronic diseases such as Type 2 diabetes and Parkinson’s, finding disease-modifying therapies is the “Holy Grail,” Weyer said.

“These are life-long diseases, and anything you can do to either delay or prevent the onset of the disease, or to slow its progression over a long period of time” has great benefit, Weyer said.

Insulin has many biological roles in the body, so it’s not surprising that an abnormal response to insulin could play a role in Parkinson’s disease as well as diabetes, Weyer said.

New findings indicate that phosphorylated LRRK2 (leucine-rich repeat kinase 2) protein levels in urine are elevated in patients diagnosed with idiopathic Parkinson Disease (PD), and that urinary phosphorylated LRRK2 levels correlate with the presence and severity of symptoms such as cognitive impairment in individuals with PD. Researchers affiliated with the University of Alabama at Birmingham published their findings in Neurology and in Movement Disorders (1,2).

The etiology of PD is currently unknown and mechanisms of action are still not completely clarified. It is well established, however, that aging is the single most important risk factor. PD is the second most frequent age-related neurodegenerative disorder, and one of the key pathogenic features is slow and progressive neuronal death that is concomitant with cognitive dysfunction. Current therapeutic modalities are inadequate and clinical need is significant. More than 6 million individuals worldwide are diagnosed with PD.

To date, several common genetic variants, or single nucleotide polymorphisms (SNPs), have been identified that influence the risk for disease. For example, polymorphic variants in LRRK2 gene have previously been validated as genetic factors that confer susceptibility to PD.

Although the gene remains poorly characterized, five different mutations in the gene encoding LRRK2 are considered a common cause of inherited PD (3). One of the five mutations that are causal is the G2019S mutation in the LRRK2 kinase domain, a mutation that significantly increases phosphorylation activity (1,3).

“There are currently no known ways to predict which G2019S mutation carriers will develop PD,” the authors wrote in the Neurology publication. Investigators purified LRRK2 protein from urinary exosomes collected from a total of 76 men. (Exosomes are membrane vesicles of endosomal origin that are secreted by most cells in culture, and are present in most biological fluids such as urine, blood, and saliva.) Then, they compared the ratio of phosphorylated LRRK2 to total LRRK2 in urine exosomes. Results show that “elevated … phosphorylated LRRK2 predicted the risk” for onset of PD in LRRK2 G2019S mutation carriers (1).

In their follow-up study, which was published in Movement Disorders, investigators compared phosphorylated LRRK2 levels in urine samples of 79 individuals diagnosed with PD to those of 79 healthy control participants. Results show that phosphorylated LRRK2 levels were significantly elevated in patients with PD when compared to those of controls. Also, phosphorylated LRRK2 levels correlated with the severity of cognitive impairment in patients with PD (2).

“Because few viable biomarkers for PD exist … phosphorylated LRRK2 levels may be a promising candidate for further exploration,” the authors concluded in their publication.

1. Fraser KB, Moehle MS, Alcalay RN, et al. Urinary LRRK2 phosphorylation predicts parkinsonian phenotypes in G2019S LRRK2 carriers. Neurology. 2016;86:994-999.
2. Fraser KB, Rawlins AB, Clar RG, et al. Ser(P)-1292 LRRK2 in urinary exosomes is elevated in idiopathic Parkinson’s disease. Mov Disord. 2016. doi: 10.1002/mds.26686.
3. Greggio E, Cookson MR. Leucine-rich repeat kinase 2 mutations and Parkinson’s disease: three questions. ASN Neuro. 2009;1:e00002.,psych_all&hmSubId=&hmEmail=5JIkN8Id_eWz7RlW__D9F5p_RUD7HzdI0&NID=1710903786&dl=0&spMailingID=14919209&spUserID=MTQ4MTYyNjcyNzk2S0&spJobID=820575619&spReportId=ODIwNTc1NjE5S0