Posts Tagged ‘military’

defense-large

molar-mike-on-cast--598x414px-1

screen_shot_2018-09-10_at_4.00.19_pm
The future of battlefield communications is resting comfortably near your back gums.

Next time you pass someone on the street who appears to be talking to themselves, they may literally have voices inside their head…and be a highly trained soldier on a dangerous mission. The Pentagon has inked a roughly $10 million contract with a California company to provide secure communication gear that’s essentially invisible.

Dubbed the Molar Mic, it’s a small device that clips to your back teeth. The device is both microphone and “speaker,” allowing the wearer to transmit without any conspicuous external microphone and receive with no visible headset or earpiece. Incoming sound is transmitted through the wearer’s bone matter in the jaw and skull to the auditory nerves; outgoing sound is sent to a radio transmitter on the neck, and sent to another radio unit that can be concealed on the operator. From there, the signal can be sent anywhere.

“Essentially, what you are doing is receiving the same type of auditory information that you receive from your ear, except that you are using a new auditory pathway — through your tooth, through your cranial bones — to that auditory nerve. You can hear through your head as if you were hearing through your ear,” said Peter Hadrovic, CEO of Molar Mic creator Sonitus Technologies. He likened the experience to what happens when you eat a crunchy breakfast cereal — but instead of hearing that loud (delightfully marketable) chewing noise, you’re receiving important communications from your operations team.

Your ability to understand conversations transmitted through bone improves with practice. “Over the period of three weeks, your brain adapts and it enhances your ability to process the audio,” said Hadrovic. But even “out of the gate, you can understand it,” he said. (more below)

The Molar Mic connects to its transmitter via near-field magnetic induction. It’s similar to Bluetooth, encryptable, but more difficult to detect and able to pass through water.

Sonitus received early funding from In-Q-Tel, the nonprofit investment arm of the CIA, to develop the concept. Hadrovic declined to say whether CIA operatives had used the device in intelligence gathering. But the Molar Mic has seen the dust of Afghanistan and even played a role in rescue operations in the United States.

In Aug, 2016, a connection Hadrovic met through In-Q-Tel introduced the company to the Defense Innovation Unit Experimental, or DIUx (since rebranded simply DIU). They linked Sonitus to their “warrior in residence” and several other pararescuemen, or PJs, from the Air National Guard’s 131st Rescue Squadron at Moffett Field in Mountain View, California, near the DIU headquarters.Pararescuemen airdrop behind enemy lines to rescue downed aircrews.

A few of the airmen took prototypes of the device on deployment to Afghanistan. Although they didn’t use it during missions, they were able to test it repeatedly and offer feedback. Hadrovic said the 14 months of testing were critical to improving the product for use by the military.

In 2017, a few of the PJs from the 131st brought Molar Mic along when they deployed to Texas to help with rescue operations for Hurricane Harvey. Hadrovic said the airmen were pleased with its performance during complicated operations involving water, helicopters, and a lot of external noise.

“This guy is standing in neck-deep water, trying to hoist a civilian up into a helicopter above. He says, ‘There is no way I would be able to communicate with the crew chief and the pilot if I was not wearing your product.’” (More below)

The same technology holds the potential for far more rich biometric communication between operators and their commanders, allowing soldiers in the field and their team to get a timely sense of how the soldier is responding to pressure or injury, without him or her having to communicate all of that explicitly. It’s something that the military is working toward.

“As we look to the future human-machine interface… the human creates a lot of information, some of it intentional, some of it unintentional. Speaking is one form of information creation,” says Hadrovic. “Once you’ve made something digital, the information can be interspersed…We have a tremendous wealth of opportunities to communicate out of the person and back to the person, information that can be either collected from them and processed offline and given back in a nice feedback loop. What we’ve done is invested in the platform that will support these future elements.”

https://www.defenseone.com/technology/2018/09/military-now-has-tooth-mics-invisible-hands-free-radio-calls/151145/

Thanks to Kebmodee for bringing this to the It’s Interesting community.

Advertisements

DARPA’s new research in brain-computer interfaces is allowing a pilot to control multiple simulated aircraft at once.

A person with a brain chip can now pilot a swarm of drones — or even advanced fighter jets, thanks to research funded by the U.S. military’s Defense Advanced Research Projects Agency, or DARPA.

The work builds on research from 2015, which allowed a paralyzed woman to steer a virtual F-35 Joint Strike Fighter with only a small, surgically-implantable microchip. On Thursday, agency officials announced that they had scaled up the technology to allow a user to steer multiple jets at once.

“As of today, signals from the brain can be used to command and control … not just one aircraft but three simultaneous types of aircraft,” said Justin Sanchez, who directs DARPA’s biological technology office, at the Agency’s 60th-anniversary event in Maryland.

More importantly, DARPA was able to improve the interaction between pilot and the simulated jet to allow the operator, a paralyzed man named Nathan, to not just send but receive signals from the craft.

“The signals from those aircraft can be delivered directly back to the brain so that the brain of that user [or pilot] can also perceive the environment,” said Sanchez. “It’s taken a number of years to try and figure this out.”

In essence, it’s the difference between having a brain joystick and having a real telepathic conversation with multiple jets or drones about what’s going on, what threats might be flying over the horizon, and what to do about them. “We’ve scaled it to three [aircraft], and have full sensory [signals] coming back. So you can have those other planes out in the environment and then be detecting something and send that signal back into the brain,” said Sanchez.

The experiment occured a “handful of months ago,” he said.

It’s another breakthrough in the rapidly advancing field of brain-computer interfaces, or BCIs, for a variety of purposes. The military has been leading interesting research in the field since at least 2007,. And in 2012, DARPA issued a $4 million grant to build a non-invasive “synthetic telepathy” interface by placing sensors close to the brain’s motor centers to pick up electrical signals — non-invasively, over the skin.

But the science has advanced rapidly in recent years, allowing for breakthroughs in brain-based communication, control of prosthetic limbs, and even memory repair.

https://www.defenseone.com/technology/2018/09/its-now-possible-telepathically-communicate-drone-swarm/151068/?oref=d-channeltop

The silk spiders produce is tougher than Kevlar and more flexible than nylon, and Air Force researchers think it could it could be key to creating new materials that take the load and heat off troops in the field.

Scientists at the Air Force Research Lab and Purdue University have been examining natural silk to get a sense of its ability to regulate temperature — silk can drop 10 to 15 degrees Fahrenheit through passive radiative cooling, which means radiating more heat than it absorbs, according to an Air Force news release.

Those researchers want to apply that property to synthetics, like artificial spider silk, which is stronger than Kevlar, the polymer typically used in body armor, and more flexible than nylon.

Enhancing body armor and adding comfort for troops is one of many improvements hoped for by a team led by Dr. Augustine Urbas, a researcher in the Functional Materials Division of the Materials and Manufacturing Directorate.

“Understanding natural silk will enable us to engineer multifunctional fibers with exponential possibilities. The ultra-strong fibers outperform the mechanical characteristics of many synthetic materials as well as steel,” Urbas said in the release. “These materials could be the future in comfort and strength in body armor and parachute material for the warfighter.”

In addition to making flexible, cooler body armor, the material could also be used to make tents that keep occupants cooler as well as parachutes that can carry heavier loads.

Artificial spider silk may initially cost double what Kevlar does, but its light weight, strength, flexibility, and potential for other uses make it more appealing, according to the release.

Air Force researchers are also looking at Fibroin, a silk protein produced by silkworms, to create materials that can reflect, absorb, focus, or split light under different circumstances.

It’s not the military’s first attempt to shake up its body armor with natural or synthetic substances.

Two years ago, the Army said it was looking into using genetically modified silkworms to create a tough, elastic fiber known as Dragon Silk.

Dr. James Zheng, chief scientist for project manager Soldier Protection and Individual Equipment, told Army Times at the time that while the Army is developing and testing material solutions all the time, “Mother Nature has created and optimized many extraordinary materials.”

At the end of 2016, then-Air Force Academy cadet Hayley Weir and her adviser, professor Ryan Burke, successfully tested a kind of viscous substance that could be used to enhance existing body armor. Weir did not reveal the formula for the substance, but she used plastic utensils and a KitchenAid mixer to whip up the gravy-like goo, placing it in vacuum-sealed bags and flattened into quarter-inch layers.

The material was designed to be lighter than standard Kevlar and offer more flexibility for the wearer. During tests, when struck by bullets, the gooey material absorbed the impact and stopped the bullets.

https://www.businessinsider.com/military-scientists-want-to-use-spider-silk-for-body-armor-parachutes-2018-8


Study paves way for personnel such as drone operators to have electrical pulses sent into their brains to improve effectiveness in high pressure situations.

US military scientists have used electrical brain stimulators to enhance mental skills of staff, in research that aims to boost the performance of air crews, drone operators and others in the armed forces’ most demanding roles.

The successful tests of the devices pave the way for servicemen and women to be wired up at critical times of duty, so that electrical pulses can be beamed into their brains to improve their effectiveness in high pressure situations.

The brain stimulation kits use five electrodes to send weak electric currents through the skull and into specific parts of the cortex. Previous studies have found evidence that by helping neurons to fire, these minor brain zaps can boost cognitive ability.

The technology is seen as a safer alternative to prescription drugs, such as modafinil and ritalin, both of which have been used off-label as performance enhancing drugs in the armed forces.

But while electrical brain stimulation appears to have no harmful side effects, some experts say its long-term safety is unknown, and raise concerns about staff being forced to use the equipment if it is approved for military operations.

Others are worried about the broader implications of the science on the general workforce because of the advance of an unregulated technology.

In a new report, scientists at Wright-Patterson Air Force Base in Ohio describe how the performance of military personnel can slump soon after they start work if the demands of the job become too intense.

“Within the air force, various operations such as remotely piloted and manned aircraft operations require a human operator to monitor and respond to multiple events simultaneously over a long period of time,” they write. “With the monotonous nature of these tasks, the operator’s performance may decline shortly after their work shift commences.”

Advertisement

But in a series of experiments at the air force base, the researchers found that electrical brain stimulation can improve people’s multitasking skills and stave off the drop in performance that comes with information overload. Writing in the journal Frontiers in Human Neuroscience, they say that the technology, known as transcranial direct current stimulation (tDCS), has a “profound effect”.

For the study, the scientists had men and women at the base take a test developed by Nasa to assess multitasking skills. The test requires people to keep a crosshair inside a moving circle on a computer screen, while constantly monitoring and responding to three other tasks on the screen.

To investigate whether tDCS boosted people’s scores, half of the volunteers had a constant two milliamp current beamed into the brain for the 36-minute-long test. The other half formed a control group and had only 30 seconds of stimulation at the start of the test.

According to the report, the brain stimulation group started to perform better than the control group four minutes into the test. “The findings provide new evidence that tDCS has the ability to augment and enhance multitasking capability in a human operator,” the researchers write. Larger studies must now look at whether the improvement in performance is real and, if so, how long it lasts.

The tests are not the first to claim beneficial effects from electrical brain stimulation. Last year, researchers at the same US facility found that tDCS seemed to work better than caffeine at keeping military target analysts vigilant after long hours at the desk. Brain stimulation has also been tested for its potential to help soldiers spot snipers more quickly in VR training programmes.

Neil Levy, deputy director of the Oxford Centre for Neuroethics, said that compared with prescription drugs, electrical brain stimulation could actually be a safer way to boost the performance of those in the armed forces. “I have more serious worries about the extent to which participants can give informed consent, and whether they can opt out once it is approved for use,” he said. “Even for those jobs where attention is absolutely critical, you want to be very careful about making it compulsory, or there being a strong social pressure to use it, before we are really sure about its long-term safety.”

But while the devices may be safe in the hands of experts, the technology is freely available, because the sale of brain stimulation kits is unregulated. They can be bought on the internet or assembled from simple components, which raises a greater concern, according to Levy. Young people whose brains are still developing may be tempted to experiment with the devices, and try higher currents than those used in laboratories, he says. “If you use high currents you can damage the brain,” he says.

In 2014 another Oxford scientist, Roi Cohen Kadosh, warned that while brain stimulation could improve performance at some tasks, it made people worse at others. In light of the work, Kadosh urged people not to use brain stimulators at home.

If the technology is proved safe in the long run though, it could help those who need it most, said Levy. “It may have a levelling-up effect, because it is cheap and enhancers tend to benefit the people that perform less well,” he said.

https://www.theguardian.com/science/2016/nov/07/us-military-successfully-tests-electrical-brain-stimulation-to-enhance-staff-skills

Thanks to Kebmodee for bringing this to the It’s Interesting community.


The XSTAT Rapid Hemostasis System

by George Dvorsky

An innovative sponge-filled dressing device recently saved the life of a coalition forces soldier who was shot in the leg. It’s the first documented clinical use of the product, known as XSTAT.

The device was approved for military use back in 2014, but this incident marks the first time the system has been used in a real-world situation. The hemostatic device, developed by RevMedx Inc., was used by a United States forward surgical team (FST) after it failed to stanch severe bleeding in a patient using standard techniques. The XSTAT Rapid Hemostasis System works by pumping expandable, tablet-sized sponges into a wound, stanching bleeding while a patient is rushed to hospital.

XSTAT is designed to treat severe bleeding in areas susceptible to junctional wounds, such as the axilla (the space below the shoulder where vessels and nerves enter and leave the upper arm) and groin. Once injected, the sponge-like tablets rapidly expand within the wound and exert hemostatic pressure to stop the bleeding. Each sponge contains an x-ray marker to confirm surgical removal after surgery.

In this first reported case, a soldier suffered a gunshot wound to the left thigh. After seven hours of unsuccessful surgery to stop the bleeding, the doctors decided to use XSTAT. Here’s a detailed description from the Journal of Emergency Medical Services:


The femoral artery and vein were transected and damage to the femur and soft tissue left a sizable cavity in the leg. After a self-applied tourniquet stopped the bleeding, the patient was transferred to an FST for evaluation and treatment. After proximal and distal control of the vessel was achieved, several hours were spent by the team trying to control residual bleeding from the bone and accessory vessels. Throughout the course of the roughly 7-hour surgery, multiple attempts at using bone wax and cautery on the bleeding sites were unsuccessfull and the patient received multiple units of blood and plasma. Eventually, the FST team opted to use XSTAT and applied a single XSTAT device to the femoral cavity— resulting in nearly immediate hemostasis. The patient was stabilized and eventually transported to a definitive care facility.

So in its first true test, the XSTAT system worked beautifully. Andrew Barofsky, the president and CEO of RevMedx, was clearly delighted in this initial result. “We are pleased to see XSTAT play a critical role in saving a patient’s life and hope to see significant advancement toward further adoption of XSTAT as a standard of care for severe hemorrhage in pre-hospital settings,” Barofsky said.

And it look likes Barofsky’s hope will soon come true. Late last year, the U.S. Food and Drug Administration approved XSTAT for use in the general population. Given this good first result, emergency responders should now have an added boost of confidence that this unorthodox device actually works.

http://gizmodo.com/this-bizarre-gunshot-plugging-device-just-saved-its-fir-1779606992?utm_source=feedburner&utm_medium=feed&utm_campaign=Feed%3A+gizmodo%2Ffull+%28Gizmodo%29


Over the past 15 years, more than 330,000 US soldiers have suffered a traumatic brain injury. Many were evacuated by air for further treatment. A new study has found evidence that such air evacuations may pose a significant added risk, potentially causing more damage to already injured brains.

Over the past 15 years, more than 330,000 U.S. soldiers have suffered a traumatic brain injury (TBI). It is one of the leading causes of death and disability connected to the country’s recent conflicts in Afghanistan and Iraq. Many of these patients were evacuated by air from these countries to Europe and the U.S. for further treatment. In general, these patients were flown quickly to hospitals outside the battle zone, where more extensive treatment was available.

But now a new study by researchers at the University of Maryland School of Medicine has found evidence that such air evacuations may pose a significant added risk, potentially causing more damage to already injured brains. The study is the first to suggest that air evacuation may be hazardous for TBI patients. The study was published in the Journal of Neurotrauma.

“This research shows that exposure to reduced barometric pressure, as occurs on military planes used for evacuation, substantially worsens neurological function and increases brain cell loss after experimental TBI — even when oxygen levels are kept in the normal range. It suggests that we need to carefully re-evaluate the cost-benefit of air transport in the first days after injury,” said lead researcher Alan Faden, MD, the David S. Brown Professor in Trauma in the Departments of Anesthesiology, Anatomy & Neurobiology, Neurology, and Neurosurgery, and director, Shock, Trauma and Anesthesiology Research Center (STAR) as well as the National Study Center for Trauma and Emergency Medical Services.

About a quarter of all injured soldiers evacuated from Afghanistan and Iraq have suffered head injuries.

Faden and his colleagues tested rats that were subjected to TBI, using a model that simulates key aspects of human brain injury. Animals were exposed to six hours of lowered air pressure, known as hypobaria, at levels that simulated conditions during transport; control animals were exposed to normal pressure. All the animals received extra oxygen to restore normal oxygen concentrations in the blood. In another study, animals received oxygen, either as in the first study or at much higher 100 percent concentration, which is often used during military air evacuations. On its own, low air pressure worsened long-term cognitive function and increased chronic brain inflammation and brain tissue loss. Pure oxygen further worsened outcomes.

Faden and his colleagues believe the findings raise concerns about the increased use of relatively early air evacuation, and suggest that this potential risk should be weighed against the benefits of improved care after evacuation. It may be necessary, he says, to change the current policy for TBI patients and delaying air evacuation in many cases.

In an accompanying editorial, Patrick Kochanek, MD, a leading expert on TBI and trauma care at the University of Pittsburgh, called the findings “highly novel and eye-opening,” and said that they could have “impactful clinical relevance for the field of traumatic brain injury in both military and civilian applications.”

Faden and colleagues believe that one of the mechanisms by which hypobaria worsens TBI is by increasing persistent brain inflammation after injury. They are currently examining how this process occurs and have tested treatments that can reduce the risks of air evacuation. Early results are promising. Scientists suspect that breathing pure oxygen could worsen TBI by increasing production of dangerous free radicals in the brain. After brain injury, these free radicals flood the site of injury, and pure oxygen may further boost these levels. Several recent studies from trauma centers, including from the R Adams Cowley Shock Trauma Center at the University of Maryland Medical Center, have found evidence that using 100 percent oxygen in trauma patients may be counterproductive.

Journal Reference:

Jacob W Skovira, Shruti V Kabadi, Junfang Wu, Zaorui Zhao, Joseph DuBose, Robert E Rosenthal, Gary Fiskum, Alan I Faden. Simulated Aeromedical Evacuation Exacerbates Experimental Brain Injury. Journal of Neurotrauma, 2015; DOI: 10.1089/neu.2015.4189

http://www.sciencedaily.com/releases/2015/11/151130110013.htm

Researchers from Louisiana State University have found that blueberries may be effective in the treatment for post-traumatic stress disorder (PTSD). Findings from the study have been presented at the Experimental Biology Meeting in Boston, MA.

Presently, the only therapy approved by the Food and Drug Administration (FDA) for PTSD is selective serotonin reuptake inhibitors (SSRIs) such as sertraline and paroxetine. Study authors have previously shown that SSRIs increase the level of serotonin (5-HT) and norepinephrine, and that the increased norepinephrine be a possible reason for the reduced efficacy of SSRI therapy.

For this study, the team studied the ability of blueberries to modulate neurotransmitter levels in a rat model of PTSD. Some of the rats received a 2% blueberry-enriched supplement diet and others received a control diet. A third control group consisted of rats without PTSD and received a standard diet without blueberries. Scientists used high-performance liquid chromatography to to measure monoamines and related metabolite levels.

Rats with PTSD who did not receive blueberries showed a predictable increase in 5-HT and norepinephrine level compared with the control group. But rats with PTSD that received blueberries showed a beneficial increase in 5-HT levels with no impact on norepinephrine levels, which suggest that blueberries can alter neurotransmitter levels in PTSD. More studies are needed to understand the protective effects of blueberries and its potential target as a treatment for PTSD.

http://www.empr.com/benefits-of-blueberries-for-post-traumatic-stress-disorder-explored-in-study/article/405810/