Posts Tagged ‘health’


Maria Haverstock, a participant in the Oakland study, became homeless at 58 when she could not find work after leaving an abusive partner.

When Serggio Lanata moved to San Francisco in 2013, he was stunned by its sprawling tent cities. “Homelessness was everywhere I looked,” he says. Lanata, a neurologist at the University of California, San Francisco (UCSF), was also struck by similarities in the behaviour of some older homeless people and patients he had treated for dementia in the clinic. Now, years later, he is embarking on a study that will examine homeless adults for early signs of Alzheimer’s disease and other degenerative brain disorders to better understand the interplay between these conditions and life on the street.

The work, which is set to begin next month, ties into an ongoing effort by researchers at UCSF to understand the biological effects of homelessness in older people. Since 2013, a team led by Margot Kushel, director of the university’s Center for Vulnerable Populations, has followed a group of about 350 older homeless adults in Oakland, California, to determine why this group ages in hyper-speed. Although the participants’ average age is 57, they experience strokes, falls, visual impairment and urinary incontinence at rates typical of US residents in their late 70s and 80s.

The research has drawn attention from politicians, economists and health-care providers across the country who are struggling to help the homeless and reduce their numbers. Although homelessness is a global problem, the situation in California is particularly acute. Nearly 70% of the 130,000 people without homes in the state are considered to be ‘unsheltered’, living on the streets or in locations unfit for human habitation, compared with just 5% in New York City. In the San Francisco Bay Area — California’s wealthy technology hub, which includes Silicon Valley — roughly 28,200 people are homeless.


Homeless encampments, like this one in Oakland, California, are a familiar site in the San Francisco Bay Area.

The United States’ homeless population is also greying: rising housing prices in many areas have increased the rate of homelessness among ‘baby boomers’ born between 1954 and 1964. But many hospitals, police and homeless shelters are unprepared to deal with the special needs of an ageing homeless population. “I hear from shelter providers, ‘Gosh, we are set up for people who use drugs but we have no idea how to manage dementia’,” Kushel says. By understanding how homelessness can accelerate ageing, her team hopes to identify ways to curb suffering and save governments money.

“This crisis is upon us,” says Dennis Culhane, a social scientist at the University of Pennsylvania in Philadelphia. “A lot of money will be spent on this population. We can draw upon Margot’s data and learn how to spend that money wisely — or else we’ll just spend and still have lots of human misery.”

He and his colleagues estimate that Los Angeles, California, will spend $621 million annually on emergency medical care, nursing home beds and shelters for homeless people over the age of 55 between 2019 and 2030. Their analysis suggests that the city could reduce its spending by $33 million per year if it provided homes to elderly people who lack them.

A closer look

Researchers have known for decades that physical and mental health problems are prevalent among the homeless (see ‘Declining health’). But there was little systematic research on the progression and causes of their ailments in 2013, when Kushel launched a study on the life trajectories of older homeless adults in the Bay Area. Since then, 42 of the initial 350 participants have died — mainly from cancer, heart attacks and diabetes. (Earlier this year, the study enrolled another 100 people to compensate for the loss of original participants.)

Kushel and her colleagues got a boost on 1 May, when philanthropists Marc and Lynne Benioff announced that they had donated US$30 million to create a research initiative at UCSF on homelessness. Marc Benioff, who founded the San Francisco-based computing company Salesforce, says the money will support research to explore the causes of homelessness and identify ways to prevent it.

Lanata’s study, which is set to begin next month, will look for signs of debilitating brain conditions — such as dementia of the frontal and temporal lobes, which can cause behavioural changes — in at least 20 homeless adults. He and his colleagues will conduct neurological exams, which might include brain scans, on participants to learn how homelessness influences these brain disorders. People living on the streets might face several factors that can contribute to neurological disease, Lanata says, such as lack of sleep, exposure to polluted air near highways, poorly controlled diabetes, high blood pressure and alcohol abuse.

By asking study participants about their personal histories, he also hopes to learn whether neurological issues might have helped to put them on the street — perhaps by impairing their ability to work or seek government assistance. That would make sense to him, given his experience treating people with some types of dementia. “If those patients didn’t have strong family support, they would be homeless, since no one could or would care for them,” Lanata says. “They can be hard to handle.”

And Kushel has begun a new phase of her ongoing study, which will explore how the sudden stress of homelessness might trigger or exacerbate existing conditions. Many of the people in her study were over the age of 50 when they became homeless.


Kimberly Lea (left) greets Vernada Jones, who is recovering from a gunshot wound to the face. Both women are participating in the Oakland study.

Nearly half of the participants exhibit signs of extreme loneliness, which has been linked to poor outcomes in people with cancer and other diseases1. One-quarter of those in the study meet the criteria for cognitive impairment, compared with less than 10% among people over the age of 70 in the United States more generally2. And in a paper in the press, Kushel and her colleagues found that 10% of participants report being physically or sexually assaulted at least every six months.

An increasing toll

Although Culhane and other health economists have already begun to use Kushel’s findings to project how much it costs to care for the indigent, it is not clear whether politicians or the public will accept such suggestions.

California Governor Gavin Newsom included $500 million for shelters and other support facilities in his proposed $209 billion state budget for 2019–20. But in late March, San Francisco residents rapidly met their goal of raising more than $100,000 to block the construction of a homeless shelter in a wealthy, waterfront neighbourhood. And although city voters approved a plan in November 2018 to fund services for the homeless by taxing the San Francisco’s biggest companies, business groups are challenging the policy in court.

Coco Auerswald, a public-health researcher at the University of California, Berkeley, hopes that Kushel’s work and other studies of homelessness strike a moral nerve. “You judge a society on how it treats its most vulnerable,” she says. “My fear is that we will accept this as a state of affairs in our country.”

Nature 569, 467-468 (2019)

References
1.
Patanwala, M. et al. J. Gen. Intern. Med. 33, 635–643 (2018).

Advertisements

By KATIE KINDELAN

Michael Watson, 18, battled his weight his entire life but decided to make a lasting change when he looked in a mirror his sophomore year of high school.

“When I looked in the mirror I was really ready to get it done and thought, ‘I can’t just fail anymore on my diet,’” Watson said. “I need to actually do this.”

Watson, now a high school senior in Canton, Ohio, started by walking to and from school every day, more than 40 minutes round trip.

He walked to school every day of his junior year, no matter whether it was hot, raining or snowing.

“When I took the bus to school, I’d want to sit by a kid and they’d say, ‘No, go sit somewhere else because I was so big,’” Watson recalled. “When I started walking, I didn’t even know what time the bus came and that was my motivation, ‘I have to walk.’”

Watson also changed his diet, working with his dad to learn how to count calories and then forgoing his normal fast food meals for salads, oatmeal and soup.

“It was extremely hard, especially at first,” said Watson, who also worked at a local Kentucky Fried Chicken restaurant during his weight loss. “What motivated me was stepping on the scale.”

“I’d see that I was 290 [pounds] and say, ‘Let’s get to 280, come on Michael, you got this,’” he said.

Watson started at his highest weight of 325 pounds. He now weighs 210 pounds, achieving a 115 pound weight loss.

In addition to walking, Watson now lifts weights in a home gym he created in his family’s garage.

“I lost a lot of my insecurities when I lost all that weight,” he said. “You work for it and you get it, so it feels amazing for sure.”

Watson’s father, Jim Watson, said he notices his son walk around now with “more confidence,” allowing him to show his “funny and outgoing” personality to more people.

Watson’s accomplishment caught the attention of his classmates and teachers at McKinley Senior High School, from which he will graduate later this month.

“His story stuck with me,” said Terrance Jones, a family support specialist at McKinley who nominated Watson for the school’s “Senior Limelight” recognition.

“Michael is a young man who aspired to be able to be a better person for himself. We’re not talking about athletic accomplishments or academic accomplishments, this is a personal development success,” he said. “We need to pay more attention to personal development successes with students.”

Watson plans to find a full-time job after graduation, possibly in the food industry. He studied in his school’s culinary program during his weight loss and credits his teacher in the program with helping him learn more about healthier food choices and cooking.

“I hope I can be an inspiration to others,” Watson said, adding that he achieved his weight loss by reminding himself that “every day is a new day.”

“That’s what I said on my diet all the time because I’d mess up some days,” he said. “I’d tell myself, ‘Tomorrow is a new day. You’ve’ got to start over and eat the oatmeal in the morning.”

https://abcnews.go.com/GMA/Wellness/high-school-senior-loses-115-pounds-walking-school/story?id=63047775

by Lindsey Valich

Explorers have dreamt for centuries of a Fountain of Youth, with healing waters that rejuvenate the old and extend life indefinitely.

Researchers at the University of Rochester, however, have uncovered more evidence that the key to longevity resides instead in a gene.

In a new paper published in the journal Cell, the researchers—including Vera Gorbunova and Andrei Seluanov, professors of biology; Dirk Bohmann, professor of biomedical genetics; and their team of students and postdoctoral researchers—found that the gene sirtuin 6 (SIRT6) is responsible for more efficient DNA repair in species with longer lifespans. The research illuminates new targets for anti-aging interventions and could help prevent age-related diseases.

Inevitable double-strand breaks

As humans and other mammals grow older, their DNA is increasingly prone to breaks, which can lead to gene rearrangements and mutations—hallmarks of cancer and aging. For that reason, researchers have long hypothesized that DNA repair plays an important role in determining an organism’s lifespan. While behaviors like smoking can exacerbate double-strand breaks (DSBs) in DNA, the breaks themselves are unavoidable. “They are always going to be there, even if you’re super healthy,” says Bohmann. “One of the main causes of DSBs is oxidative damage and, since we need oxygen to breathe, the breaks are inevitable.”

Organisms like mice have a smaller chance of accumulating double-strand breaks in their comparatively short lives, versus organisms with longer lifespans, Bohmann says. “But, if you want to live for 50 years or so, there’s more of a need to put a system into place to fix these breaks.”

The longevity gene

SIRT6 is often called the “longevity gene” because of its important role in organizing proteins and recruiting enzymes that repair broken DNA; additionally, mice without the gene age prematurely, while mice with extra copies live longer. The researchers hypothesized that if more efficient DNA repair is required for a longer lifespan, organisms with longer lifespans may have evolved more efficient DNA repair regulators. Is SIRT6 activity therefore enhanced in longer-lived species?

To test this theory, the researchers analyzed DNA repair in 18 rodent species with lifespans ranging from 3 years (mice) to 32 years (naked mole rats and beavers). They found that the rodents with longer lifespans also experience more efficient DNA repair because the products of their SIRT6 genes—the SIRT6 proteins—are more potent. That is, SIRT6 is not the same in every species. Instead, the gene has co-evolved with longevity, becoming more efficient so that species with a stronger SIRT6 live longer. “The SIRT6 protein seems to be the dominant determinant of lifespan,” Bohmann says. “We show that at the cell level, the DNA repair works better, and at the organism level, there is an extended lifespan.”

The researchers then analyzed the molecular differences between the weaker SIRT6 protein found in mice versus the stronger SIRT6 found in beavers. They identified five amino acids responsible for making the stronger SIRT6 protein “more active in repairing DNA and better at enzyme functions,” Gorbunova says. When the researchers inserted beaver and mouse SIRT6 into human cells, the beaver SIRT6 better reduced stress-induced DNA damage compared to when researchers inserted the mouse SIRT6. The beaver SIRT6 also better increased the lifespan of fruit flies versus fruit flies with mouse SIRT6.

Species with even more robust SIRT6?

Although it appears that human SIRT6 is already optimized to function, “we have other species that are even longer lived than humans,” Seluanov says. Next steps in the research involve analyzing whether species that have longer lifespans than humans—like the bowhead whale, which can live more than 200 years—have evolved even more robust SIRT6 genes.

The ultimate goal is to prevent age-related diseases in humans, Gorbunova says. “If diseases happen because of DNA that becomes disorganized with age, we can use research like this to target interventions that can delay cancer and other degenerative diseases.”

https://phys.org/news/2019-04-longevity-gene-responsible-efficient-dna.html

High blood pressure is one of those conditions that can quietly and slowly damage your body. For starters, uncontrolled blood pressure can lead to stroke, narrowing of arteries, heart failure, kidney problems, damage to eye vessels, dementia, and other serious conditions. That’s the bad news. The good news is that what you eat can significantly help you reduce your blood pressure, especially if it’s already elevated or in the borderline range.

Here are the best 15 foods that you can eat to naturally lower your blood pressure and safeguard your long-term health:

1. Swiss chard, spinach, arugula, turnip greens, beet greens, collard greens, and other leafy greens

What do all these foods have in common? Potassium. This nutrient reduces blood pressure by balancing electrolytes in the body and helping the kidneys get rid of excess sodium. Aiming for 4,700 mg of potassium daily from foods like leafy greens can help you do that! Bananas tend to get all the fame when it comes to potassium, but a cup of cooked Swiss chard contains 960 mg potassium, and a cup of cooked spinach contains 839 mg potassium, while one banana contains only about half of that (422 mg). Since they are lower in carbohydrates and calories, leafy greens may fit better into your overall health goals.

Magnesium is another mineral that helps lower blood pressure by dilating blood vessels. A meta-analysis found that, on average, 400 mg of magnesium per day lowers diastolic blood pressure by 2.2 points. A cup of cooked spinach contains 157 mg of magnesium.

Spinach and arugula also contain nitrate, which dilates arteries and reduces blood pressure. Don’t confuse nitrate, found naturally in spinach, arugula, celery, and other vegetables, with nitrites found in cured and aged meats. Healthy women who ate nitrate-rich vegetables for one week reduced systolic blood pressure. Another study found that a Japanese diet high in nitrate reduced diastolic blood pressure by 4.5 points compared to a diet low in nitrates.

2. Acorn squash, yams, sweet potatoes, and other winter squashes

One baked potato contains 926 g of potassium, and a cup of acorn squash contains 896 g of potassium. Sweet potatoes and butternut squash are runners-up. These vegetables are starchy, so stick to about one cup a day and use them to replace other high-carbohydrate foods like processed grains, sweets, or pastries. Roast acorn squash and mix with collard greens for a nice fall side dish. Make butternut squash soup. A baked white or sweet potato can fit into a healthy diet—as long as your plate has other nonstarchy veggies.

3. Berries

Berries are rich in polyphenols and vitamin C, which can help reduce inflammation in arteries. Two servings of berries a day for eight weeks reduced systolic and diastolic blood pressure in people who had mild hypertension. Those who had higher blood pressure levels at the beginning of the study showed the most reductions. Incorporate a variety of berries in your diet—in smoothies, snacks, or salads.

4. Beans and lentils

Beans and lentils are excellent sources of potassium and magnesium. Cooked lentils have 731 g of potassium per cup and a cup of cooked lima, white, pinto, or kidney beans has between 700 to 950 g potassium. Beans also contain magnesium, with as much as 120 g of magnesium packed into just one cup of cooked black beans.

5. Oats

It might come as a surprise, but oats are also a great food to eat if you want to be mindful of your blood pressure. This is thanks to a special fiber in oats, called beta-glucan, which helps reduce blood pressure. A study found that consuming oat beta-glucan daily lowered blood pressure in obese men and women with elevated blood pressure at baseline. A different small study found that 5.5 g of beta-glucan daily from oats for six weeks reduced systolic and diastolic blood pressure by 7.5 and 5.5 points in people who had mild or borderline hypertension.

Unfortunately, the amount of beta-glucan in oats will vary and isn’t listed on nutrition labels. A rule of thumb to follow is that higher fiber content in general means more beta-glucan. Rolled oats contain 3.3 grams of fiber per ⅓ cup while the same amount of oat bran packs 6 grams. Just be aware that oat fiber may increase bowel movement frequency or cause stomach upset as it gets fermented by your gut bacteria. If your diet is low in fiber, start gradually. If it causes severe diarrhea or stomach pain that won’t go away with slow introduction, consult with a dietitian who has experience in digestive health to see if oats are a good fit for you.

6. Beetroot juice

If you’re a fan of beets, you’ll be happy to learn that beetroot contains nitrate, which dilates vessels and reduces blood pressure, in addition to potassium and polyphenols. One study found that a little less than 5 ounces of beetroot juice reduced systolic and diastolic blood pressure by 7.9 and 5.7 points just three hours after drinking it. A meta-analysis also found that beet juice reduced systolic and diastolic blood pressure, especially when consumed for 14 days or more.

Roasted beets as a side dish or adding beats to salads is a healthy and beautiful addition to everyday meals. However, the research on blood pressure is done with beet juice. If you want to replicate the benefit at home, pull the juicer out and add some fresh beet juice to your daily routine.

7. Salmon

The health benefits of salmon seem to be never-ending—and blood pressure is no different. In one study, researchers found that eating 150 mg (5 ounces) of salmon containing 2.1 g of omega-3 fatty acids three times a week reduced diastolic blood pressure by 2 points. Fish oil capsules that contained 1.3 g of omega-3s had a similar effect. While cod had no effect on blood pressure in that study, it packs—along with tuna, halibut, and scallops—an excellent amount of potassium, making it a great addition to a healthy diet.

8. Olive oil

Olive oil is another food that has endless health benefits. One study showed that a daily intake of 1 ounce of polyphenols from olive oil for two months reduced systolic and diastolic blood pressure by 7.91 and 6.65 points. Improvement was more significant in people who had higher blood pressure levels to start with.

Olive oil products have a wide range of polyphenol levels, so keep in mind that the fresher and more bitter and pungent the olive oil, the more polyphenols in has. Obtain olive oil from high-quality sources and eat it raw as much as possible. Drizzle over salads and on vegetables after you finish cooking them. In the study, polyphenol-depleted olive oil didn’t show lower blood pressure.

9. Pistachio

If you’re willing to put in the work of de-shelling pistachios one by one, your blood pressure will thank you. Research has shown that people with high cholesterol who followed three diets for four weeks each: a control low-fat diet, a diet with one serving of pistachios a day (10 percent of calories), or a diet with two servings of pistachios a day (20 percent of calories). Eating one serving of pistachios reduced systolic blood pressure the most by 4.8 points.

All you cashew and almond butter fans might be wondering: What about other nuts? Mixed nuts lowered blood pressure but only in people without type 2 diabetes—and pistachios were still the most effective.

10. Flaxseeds

Flaxseeds aren’t just great for their high-fiber content, as one study showed that people with high blood pressure who ate 30 g of milled flaxseed a day for six months reduced systolic and diastolic blood pressure by 10 and 7 points.

If possible, buy whole flaxseed and grind as much as you need every few days. Add to your oatmeal or smoothie, or use instead of white flour for pancakes, muffins, or breading. Flaxseed oil may not lower systolic blood pressure, but diastolic blood pressure may improve with both the oil and the meal.

Other seeds like pumpkin and chia seeds may also help lower blood pressure as they are excellent magnesium sources.

11. Dairy foods

Dairy isn’t for everyone, but if you can tolerate it, you should know that a study on over 2,500 people—with normal blood pressure who were tracked for 14.6 years—showed that those who ate three or more servings of dairy per day or week compared to fewer than one serving, had slower increases in blood pressure. In other words, dairy consumption delayed hypertension but didn’t completely prevent it.

A meta-analysis also showed that low-fat dairy and milk reduced the risk of hypertension while cheese, yogurt, fermented dairy, or full-fat milk had no effects. A later systematic review agreed, but the authors concluded that it is not clear whether low-fat dairy was more beneficial than regular-fat dairy when it comes to blood pressure.

If you can tolerate dairy, enjoy it daily or weekly as it may help reduce your risk for developing high blood pressure. If you can’t tolerate it due to food sensitivities, allergies, digestive discomforts, or autoimmune issues, don’t stress. You can get benefits from the other foods on this list.

12. Pomegranate juice

Pomegranate juice is more than just a beautiful color, with one study showing that men and women who drank 11 ounces of pomegranate juice daily for four weeks reduced systolic and diastolic blood pressure by 3.14 and 3.33 points. Another study found that drinking 5 ounces reduced systolic blood pressure by 7 percent and diastolic blood pressure by 6 percent when measured six hours later.

But do you really need 11 ounces to get the benefit? A meta-analysis found that any amount of pomegranate juice (higher or lower than 8 ounces) and for any duration (longer or shorter than 12 weeks) reduced systolic blood pressure. However, diastolic blood pressure reduction was significant only with more than 8 ounces a day. Start with a small amount, about 4 to 8 ounces, if you’re trying to manage your sugar intake.

13. Garlic

Garlic is one of those low-key superfoods we tend to underestimate. But several studies found that taking garlic powders and extracts for one to three months can lower systolic and diastolic blood pressure in people with high or normal blood pressure. However, it is difficult to extrapolate the exact benefit of garlic as a food from studies that looked at concentrated doses. Allicin is the active ingredient in garlic and makes up only 1 percent of its weight.

Fresh garlic has more allicin than cooked, so eat few raw garlic cloves daily to see significant changes in blood pressure. Add minced or chopped garlic to salad dressings or dips. Raw garlic goes well with tahini and lemon, while parsley or cilantro help neutralize garlic breath! Don’t take garlic supplements without consulting your dietitian or doctor as they may cause heartburn, burping, upset stomach, or too much blood thinning.

14. Dark chocolate

Good news for all the chocolate lovers out there! Polyphenol-rich chocolate can lower blood pressure by 2 points on average, especially if your blood pressure is already elevated. In one study, people who had slightly elevated blood pressure reduced systolic and diastolic levels by 2.9 and 1.9 points after eating 0.2 ounces of dark chocolate daily for 18 weeks. However, another study on middle-aged overweight women found that 22 g of cocoa daily had no effect on blood pressure (they found other cardiovascular benefits from chocolate, though!

15. Hibiscus tea

The dried flowers and stems of the hibiscus plant have been used throughout history for blood pressure and other ailments. In patients who were pre-hypertensive or had mild hypertension, drinking three cups of hibiscus tea daily for six weeks reduced systolic blood pressure. Reductions were most significant in people who started with higher levels.

Enjoy hibiscus tea warm or cold. It has a sour taste, so resist the temptation to add too much sugar. Keep in mind that it’s not safe during pregnancy as it can affect hormone levels and induce early labor. If you’re not pregnant but have hormone fluctuations, start slowly and monitor how your body reacts.

https://www.mindbodygreen.com/articles/foods-that-lower-blood-pressure

By Ana Sandoiu

New research finds that a 6-month regimen of aerobic exercise can reverse symptoms of mild cognitive impairment in older adults.

Mild cognitive impairment (MCI) is characterized by a mild loss of cognitive abilities, such as memory and reasoning skills.

A person with MCI may find it hard to remember things, make decisions, or focus on tasks.

While the loss of cognitive abilities is not serious enough to interfere with daily activities, MCI raises the risk of Alzheimer’s disease and other forms of dementia.

According to the Alzheimer’s Association, 15–20 percent of adults aged 65 and over in the United States have MCI.

New research suggests that there might be a way to reverse these age-related cognitive problems. James A. Blumenthal, Ph.D. — of Duke University Medical Center in Durham, NC — and colleagues examined the effects of regimented exercise in 160 people aged 65 on average.

They published their findings in the journal Neurology.


A normal brain of a 70-year-old (left slice), compared with the brain of a 70-year-old with Alzheimer’s disease.Credit: Jessica Wilson/Science Photo Library

Neuroscientists have amassed more evidence for the hypothesis that sticky proteins that are a hallmark of neurodegenerative diseases can be transferred between people under particular conditions — and cause new damage in a recipient’s brain.

They stress that their research does not suggest that disorders such as Alzheimer’s disease are contagious, but it does raise concern that certain medical and surgical procedures pose a risk of transmitting such proteins between humans, which might lead to brain disease decades later.

“The risk may turn out to be minor — but it needs to be investigated urgently,” says John Collinge, a neurologist at University College London who led the research, which is published in Nature1 on 13 December.

The work follows up on a provocative study published by Collinge’s team in 20152. The researchers discovered extensive deposits of a protein called amyloid-beta during post-mortem studies of the brains of four people in the United Kingdom. They had been treated for short stature during childhood with growth-hormone preparations derived from the pituitary glands of thousands of donors after death.

The recipients had died in middle-age of a rare but deadly neurodegenerative condition called Creutzfeldt-Jakob disease (CJD), caused by the presence in some of the growth-hormone preparations of an infectious, misfolded protein — or prion — that causes CJD. But pathologists hadn’t expected to see the amyloid build up at such an early age. Collinge and his colleagues suggested that small amounts of amyloid-beta had also been transferred from the growth-hormone samples, and had caused, or ‘seeded’, the characteristic amyloid plaques.

Seeds of trouble
Amyloid plaques in blood vessels in the brain are a hallmark of a disease called cerebral amyloid angiopathy (CAA) and they cause local bleeding. In Alzheimer’s disease, however, amyloid plaques are usually accompanied by another protein called tau — and the researchers worry that this might also be transmitted in the same way. But this was not the case in the brains of the four affected CJD patients, which instead had the hallmarks of CAA.

The team has now more directly tested the hypothesis that these proteins could be transmitted between humans through contaminated biological preparations. Britain stopped the cadaver-derived growth hormone treatment in 1985 and replaced it with a treatment that uses synthetic growth hormone. But Collinge’s team was able to locate old batches of the growth-hormone preparation stored as powder for decades at room temperature in laboratories at Porton Down, a national public-health research complex in southern England.

When the researchers analysed the samples, their suspicions were confirmed: they found that some of the batches contained substantial levels of amyloid-beta and tau proteins.

Mouse tests
To test whether the amyloid-beta in these batches could cause the amyloid pathology, they injected samples directly into the brains of young mice genetically engineered to be susceptible to amyloid pathology. By mid-life, the mice had developed extensive amyloid plaques and CAA. Control mice that received either no treatment or treatment with synthetic growth hormone didn’t have amyloid build up.

The scientists are now checking in separate mouse experiments whether the same is true for the tau protein.

“It’s an important study, though the results are very expected,” says Mathias Jucker at the Hertie Institute for Clinical Brain Research in Tubingen, Germany. Jucker demonstrated in 2006 that amyloid-beta extracted from human brain could initiate CAA and plaques in the brains of mice3. Many other mouse studies have also since confirmed this.

Surgical implications
That the transmissibility of the amyloid-beta could be preserved after so many decades underlines the need for caution, says Jucker. The sticky amyloid clings tightly to materials used in surgical instruments, resisting standard decontamination methods4. But Jucker also notes that, because degenerative diseases take a long time to develop, the danger of any transfer may be most relevant in the case of childhood surgery where instruments have also been used on old people.

So far, epidemiologists have not been able to assess whether a history of surgery increases the risk of developing a neurodegenerative disease in later life — because medical databases tend not to include this type of data.

But epidemiologist Roy Anderson at Imperial College London says researchers are taking the possibility seriously. Major population cohort studies, such as the US Framingham Heart Study, are starting to collect information about participants’ past surgical procedures, along with other medical data.

The 2015 revelation prompted pathologists around the world to reexamine their own cases of people who had been treated with similar growth-hormone preparations — as well as people who had acquired CJD after brain surgery that had involved the use of contaminated donor brain membranes as repair patches. Many of the archived brain specimens, they discovered, were full of aberrant amyloid plaques5,6,7. One study showed that some batches of growth-hormone preparation used in France in the 1970s and 1980s were contaminated with amyloid-beta and tau — and that tau was also present in three of their 24 patients.8

Collinge says he applied unsuccessfully for a grant to develop decontamination techniques for surgical instruments after his 2015 paper came out. “We raised an important public-health question, and it is frustrating that it has not yet been addressed.” But he notes that an actual risk from neurosurgery has not yet been established.

https://www.nature.com/articles/d41586-018-07735-w?utm_source=fbk_nnc&utm_medium=social&utm_campaign=naturenews&sf204283628=1

Thank to Kebmodee for bringing this to the It’s Interesting community.

By Yasemin Saplakoglu

Drinking a cup of tea or eating a handful of berries a day may help protect against heart disease, a new study suggests.

The research, presented November 10 at the American Heart Association’s Scientific Sessions annual meeting, found that daily consumption of small amounts of flavonoids — compounds found in berries, tea, chocolate, wine and many other fruits and plants — was associated with a lower risk of heart disease.

This association (which is not to be confused with a cause-and-effect finding) is not new; previous research has also found a link between flavonoids and heart disease risk. But the new study — one of the largest done to date — adds stronger evidence to the idea that flavonoids may protect the heart, said co-lead study author Nicola Bondonno, a postdoctoral researcher at the School of Biomedical Science at the University of Western Australia.

In the study, Bondonno and her team analyzed data from nearly 53,000 people who had participated in the long-running Danish Diet, Cancer and Health Study, which began in the 1990s. At the beginning of that study, participants filled out a questionnaire with information about what types of foods they ate and how often they ate them. The researchers then tracked the participants’ health for more than two decades.

After a 23-year follow-up period, around 12,000 of the participants had developed some sort of heart condition.

The researchers found that people who reported eating around 500 milligrams or more of flavonoids daily had a lower risk of developing ischemic heart disease (where the heart’s major blood vessels are narrowed, reducing blood flow to the heart), stroke and peripheral artery disease (where blood vessels in the body are narrowed, reducing blood flow throughout the body). This association was the greatest for the latter, the researchers found.

Bondonno noted that 500 mg of flavonoids is “very easy to eat in one day.” You would get that amount of flavonoids from “a cup of tea, a handful of blueberries, maybe some broccoli,” she said. They also found that, on average, it didn’t make too much of a difference how much more flavonoids healthy people consumed once they passed the 500 mg/day threshold.

The reason flavonoids could have a protective role against heart disease is because of their anti-inflammatory properties, Bondonno told Live Science. Inflammation is a risk factor for heart disease, she said.

The researchers noted that the association between flavonoids and reduced heart disease risk varied for different groups of people. The link between flavonoids and reduced risk of heart disease in smokers, for example, wasn’t observed at 500 mg of flavonoids a day; rather, smokers needed to eat more flavonoids for the link to be apparent. Similar results were seen in people who drank alcohol and in men. However, it was in these three groups that the researchers found that flavonoid intake was associated with the greatest reduction in risk.

In their analysis, Bondonno and her team made sure to take people’s whole diets into consideration, because people who tend to eat lots of fruits and vegetables (and in turn, consume a lot of flavonoids), tend to have better diets in general, eating more fiber and fish and less processed food, which are all “associated with heart disease,” Bondonno said. When they adjusted for these diets in their report, they found that the association between flavonoid intake and reduced heart disease risk was still there, but a bit weaker. In other words, flavonoids may not play as big a role in heart disease risk as a healthy diet would in general.

Further, the study was conducted only in Danish people, and though these results shouldn’t be extrapolated, “these kinds of associations have been seen in other populations,” Bondonno said.

The findings have not yet been published in a peer-reviewed journal.

https://www.livescience.com/64060-flavonoids-heart-health.html