Posts Tagged ‘development’

Children are increasingly finding it hard to hold pens and pencils because of an excessive use of technology, senior paediatric doctors have warned.

An overuse of touchscreen phones and tablets is preventing children’s finger muscles from developing sufficiently to enable them to hold a pencil correctly, they say.

“Children are not coming into school with the hand strength and dexterity they had 10 years ago,” said Sally Payne, the head paediatric occupational therapist at the Heart of England foundation NHS Trust. “Children coming into school are being given a pencil but are increasingly not be able to hold it because they don’t have the fundamental movement skills.

“To be able to grip a pencil and move it, you need strong control of the fine muscles in your fingers,. Children need lots of opportunity to develop those skills.”

Payne said the nature of play had changed. “It’s easier to give a child an iPad than encouraging them to do muscle-building play such as building blocks, cutting and sticking, or pulling toys and ropes. Because of this, they’re not developing the underlying foundation skills they need to grip and hold a pencil.”

Six-year-old Patrick has been having weekly sessions with an occupational therapist for six months to help him develop the necessary strength in his index finger to hold a pencil in the correct, tripod grip.

His mother, Laura, blames herself: “In retrospect, I see that I gave Patrick technology to play with, to the virtual exclusion of the more traditional toys. When he got to school, they contacted me with their concerns: he was gripping his pencil like cavemen held sticks. He just couldn’t hold it in any other way and so couldn’t learn to write because he couldn’t move the pencil with any accuracy.

“The therapy sessions are helping a lot and I’m really strict now at home with his access to technology,” she said. “I think the school caught the problem early enough for no lasting damage to have been done.”

Mellissa Prunty, a paediatric occupational therapist who specialises in handwriting difficulties in children, is concerned that increasing numbers of children may be developing handwriting late because of an overuse of technology.

“One problem is that handwriting is very individual in how it develops in each child,” said Prunty, the vice-chair of the National Handwriting Association who runs a research clinic at Brunel University London investigating key skills in childhood, including handwriting.

“Without research, the risk is that we make too many assumptions about why a child isn’t able to write at the expected age and don’t intervene when there is a technology-related cause,” she said.

Although the early years curriculum has handwriting targets for every year, different primary schools focus on handwriting in different ways – with some using tablets alongside pencils, Prunty said. This becomes a problem when same the children also spend large periods of time on tablets outside school.

But Barbie Clarke, a child psychotherapist and founder of the Family Kids and Youth research agency, said even nursery schools were acutely aware of the problem that she said stemmed from excessive use of technology at home.

“We go into a lot of schools and have never gone into one, even one which has embraced teaching through technology, which isn’t using pens alongside the tablets and iPads,” she said. “Even the nurseries we go into which use technology recognise it should not all be about that.”

Karin Bishop, an assistant director at the Royal College of Occupational Therapists, also admitted concerns. “It is undeniable that technology has changed the world where our children are growing up,” she said. “Whilst there are many positive aspects to the use of technology, there is growing evidence on the impact of more sedentary lifestyles and increasing virtual social interaction, as children spend more time indoors online and less time physically participating in active occupations.”

https://www.theguardian.com/society/2018/feb/25/children-struggle-to-hold-pencils-due-to-too-much-tech-doctors-say

Thanks to Kebmodee for bringing this to the It’s Interesting community.

Advertisements

by Bahar Golipour

What is the earliest memory you have?

Most people can’t remember anything that happened to them or around them in their toddlerhood. The phenomenon, called childhood amnesia, has long puzzled scientists. Some have debated that we forget because the young brain hasn’t fully developed the ability to store memories. Others argue it is because the fast-growing brain is rewiring itself so much that it overwrites what it’s already registered.

New research that appears in Nature Neuroscience this week suggests that those memories are not forgotten. The study shows that when juvenile rats have an experience during this infantile amnesia period, the memory of that experience is not lost. Instead, it is stored as a “latent memory trace” for a long time. If something later reminds them of the original experience, the memory trace reemerges as a full blown, long-lasting memory.

Taking a (rather huge) leap from rats to humans, this could explain how early life experiences that you don’t remember still shape your personality; how growing up in a rich environment makes you a smarter person and how early trauma puts you at higher risk for mental health problems later on.

Scientists don’t know whether we can access those memories. But the new study shows childhood amnesia coincides with a critical time for the brain ― specifically the hippocampus, a seahorse-shaped brain structure crucial for memory and learning. Childhood amnesia corresponds to the time that your brain matures and new experiences fuel the growth of the hippocampus.

In humans, this period occurs before pre-school, likely between the ages 2 and 4. During this time, a child’s brain needs adequate stimulation (mostly from healthy social interactions) so it can better develop the ability to learn.

And not getting enough healthy mental activation during this period may impede the development of a brain’s learning and memory centers in a way that it cannot be compensated later.

“What our findings tell us is that children’s brains need to get enough and healthy activation even before they enter pre-school,” said study leader Cristina Alberini, a professor at New York University’s Center for Neural Science. “Without this, the neurological system runs the risk of not properly developing learning and memory functions.”

The findings may illustrate one mechanism that could in part explain scientific research that shows poverty can shrink children’s brains.

Extensive research spanning decades has shown that low socioeconomic status is linked to problems with cognitive abilities, higher risk for mental health issues and poorer performance in school. In recent years, psychologists and neuroscientists have found that the brain’s anatomy may look different in poor children. Poverty is also linked to smaller brain surface area and smaller volume of the white matter connecting brain areas, as well as smaller hippocampus. And a 2015 study found that the differences in brain development explain up to 20 percent of academic performance gap between children from high- and low-income families.

Critical Periods

For the brain, the first few years of life set the stage for the rest of life.

Even though the nervous system keeps some of its ability to rewire throughout life, several biochemical events that shape its core structure happen only at certain times. During these critical periods of the developmental stages, the brain is acutely sensitive to new sights, sounds, experiences and external stimulation.

Critical periods are best studied in the visual system. In the 1960s, scientists David Hubel and Torsten Wiesel showed that if they close one eye of a kitten from birth for just for a few months, its brain never learns to see properly. The neurons in the visual areas of the brain would lose their ability respond to the deprived eye. Adult cats treated the same way don’t show this effect, which demonstrates the importance of critical periods in brain development for proper functioning. This finding was part of the pioneering work that earned Hubel and Wiesel the 1981 Nobel Prize in Physiology or Medicine.

In the new study in rats, the team shows that a similar critical period may be happening to the hippocampus.

Alberini and her colleagues took a close look at what exactly happens in the brain of rats in their first 17 days of life (equivalent to the first three years of a human’s life). They created a memory for the rodents of a negative experience: every time the animals entered a specific corner of their cage, they received a mildly painful shock to their foot. Young rats, like kids, aren’t great at remembering things that happened to them during their infantile amnesia. So although they avoided that corner right after the shock, they returned to it only a day later. In contrast, a group of older rats retained the memory and avoided this place for a long time.

However, the younger rats, had actually kept a trace of the memory. A reminder (such as another foot shock in another corner) was enough to resurrect the memory and make the animals avoid the first corner of the cage.

Researchers found a cascade of biochemical events in the young rats’ brains that are typically seen in developmental critical periods.

“We were excited to see the same type of mechanism in the hippocampus,” Alberini told The Huffington Post.

The Learning Brain And Its Mysteries

Just like the kittens’ brain needed light from the eyes to learn to see, the hippocampus may need novel experiences to learn to form memories.

“Early in life, while the brain cannot efficiently form long-term memories, it is ‘learning’ how to do so, making it possible to establish the abilities to memorize long-term,” Alberini said. “However, the brain needs stimulation through learning so that it can get in the practice of memory formation―without these experiences, the ability of the neurological system to learn will be impaired.”

This does not mean that you should put your kids in pre-pre-school, Alberini told HuffPost. Rather, it highlights the importance of healthy social interaction, especially with parents, and growing up in an environment rich in stimulation. Most kids in developed countries are already benefiting from this, she said.

But what does this all mean for children who grow up exposed to low levels of environmental stimulation, something more likely in poor families? Does it explain why poverty is linked to smaller brains? Alberini thinks many other factors likely contribute to the link between poverty and brain. But it is possible, she said, that low stimulation during the development of the hippocampus, too, plays a part.

Psychologist Seth Pollak of University of Wisconsin at Madison who has found children raised in poverty show differences in hippocampal development agrees.

Pollak believes the findings of the new study represent “an extremely plausible link between early childhood adversity and later problems.”

“We must always be cautious about generalizing studies of rodents to understanding human children,” Pollas added. “But the nonhuman animal studies, such as this one, provide testable hypotheses about specific mechanisms underlying human behavior.”

Although the link between poverty and cognitive performance has been repeatedly seen in numerous studies, scientists don’t have a good handle on how exactly many related factors unfold inside the developing brain, said Elizabeth Sowell, a researcher from the Children’s Hospital Los Angeles. Studies like this one provide “a lot of food for thought,” she added.

http://www.huffingtonpost.com.au/2016/07/24/the-things-you-dont-remember-shape-who-you-are/

Our brain’s ability to process information and adapt effectively is dependent on a number of factors, including genes, nutrition, and life experiences. These life experiences wield particular influence over the brain during a few sensitive periods when our most important muscle is most likely to undergo physical, chemical, and functional remodeling.

According to Tara Swart, a neuroscientist and senior lecturer at MIT, your “terrible twos” and those turbulent teen years are when the brain’s wiring is most malleable. As a result, traumatic experiences that occur during these time periods can alter brain activity and ultimately change gene expressions—sometimes for good.

Throughout the first two years of life, the brain develops at a rapid pace. However, around the second year, something important happens—babies begin to speak.

“We start to understand speech first, then we start to articulate speech ourselves and that’s a really complex thing that goes on in the brain,” Swart, who conducts ongoing research on the brain and how it affects how we become leaders, told Quartz. “Additionally, children start to walk—so from a physical point of view, that’s also a huge achievement for the brain.

Learning and understanding a new language forces your brain to work in new ways, connecting neurons and forming new pathways. This is a mentally taxing process, which is why learning a new language or musical instrument often feels exhausting.

With so many important changes happening to the brain in such a short period of time, physical or emotional trauma can cause potentially momentous interruptions to neurological development. Even though you won’t have any memories of the interruptions (most people can’t remember much before age five), any kind of traumatic event—whether it’s abuse, neglect, ill health, or separation from your loved ones—can lead to lasting behavioral and cognitive deficits later in life, warns Swart.

To make her point, Swart points to numerous studies on orphans in Romania during the 1980s and 1990s. After the nation’s communist regime collapsed, an economic decline swept throughout the region and 100,000 children found themselves in harsh, overcrowded government institutions.

“[The children] were perfectly well fed, clothed, washed, but for several reasons—one being that people didn’t want to spread germs—they were never cuddled or played with,” explains Swart. “There was a lot of evidence that these children grew up with some mental health problems and difficulty holding down jobs and staying in relationships.”

Swart continues: “When brain scanning became possible, they scanned the brains of these children who had grown up into adults and showed that they had issues in the limbic system, the part of the brain [that controls basic emotions].”

In short, your ability to maintain proper social skills and develop a sense of empathy is largely dependent on the physical affection, eye contact, and playtime of those early years. Even something as simple as observing facial expressions and understanding what those expressions mean is tied to your wellbeing as a toddler.

The research also found that the brains of the Romanian orphans had lower observable brain activity and were physically smaller than average. As a result, researchers concluded that children adopted into loving homes by age two have a much better chance of recovering from severe emotional trauma or disturbances.

The teenage years

By the time you hit your teenage years, the brain has typically reached its adult weight of about three pounds. Around this same time, the brain is starting to eliminate, or “prune” fragile connections and unused neural pathways. The process is similar to how one would prune a garden—cutting back the deadwood allows other plants to thrive.

During this period, the brain’s frontal lobes, especially the prefrontal cortex, experience increased activity and, for the first time, the brain is capable of comparing and analyzing several complex concepts at once. Similar to a baby learning how to speak, this period in an adolescent’s life is marked by a need for increasingly advanced communication skills and emotional maturity.

“At that age, they’re starting to become more understanding of social relationships and politics. It’s really sophisticated,” Swart noted. All of this brain activity is also a major reason why teenagers need so much sleep.

Swart’s research dovetails with the efforts of many other scientists who have spent decades attempting to understand how the brain develops, and when. The advent of MRIs and other brain-scanning technology has helped speed along this research, but scientists are still working to figure out what exactly the different parts of the brain do.

What is becoming more certain, however, is the importance of stability and safety in human development, and that such stability is tied to cognitive function. At any point in time, a single major interruption has the ability to throw off the intricate workings of our brain. We may not really understand how these events affect our lives until much later.

http://qz.com/470751/your-brain-is-particularly-vulnerable-to-trauma-at-two-distinct-ages/