China approves first homegrown COVID-19 vaccine to enter clinical trials

By Elise Ma

One day after the U.S. began the first human trial of an mRNA vaccine candidate for COVID-19 on March 16, China said Tuesday evening that it had approved the first clinical trial of a vaccine candidate developed by domestic researchers.

The vaccine candidate, known as Ad5-nCoV, is a recombinant novel coronavirus vaccine. It was jointly developed by Tianjin-based Cansino Biologics Inc. and the Institute of Biotechnology of the Academy of Military Medical Sciences. The clinical trial will enroll 108 subjects and take place at Tongji Hospital in Wuhan, the epicenter of COVID-19.

Cansino said Ad5-nCoV is a genetically engineered vaccine candidate with the replication-defective adenovirus type 5 as the vector to express SARS-CoV-2 spike protein. The vaccine candidate is intended to be used to prevent the disease caused by the novel coronavirus infection.

Backed by the state, the company has also obtained support from the Tianjin Science and Technology Bureau through the Project on Emergency Prevention and Control of COVID-19 Infection to develop the vaccine.

On March 17, the company said it has started to prepare for clinical trials of Ad5-nCoV and the pre-screening of healthy volunteers.

Cansino CEO Xuefeng Yu said the company and the academy have been collaborating closely since late January to develop Ad5-nCoV and generate sound scientific data to support its IND filing. “Having committed to providing unconditional support to fight against the global epidemic, Cansino is determined to launch our vaccine product candidate as soon as possible, with no compromises in quality and safety,” he added.

According to the Chinese Clinical Trial Registry, it is a single-center, open and dose-escalation phase I trial testing safety and tolerance of Ad5-nCoV in healthy adults, ages 18 to 60. The low-, middle- and high-dosage groups will each see 36 patients, who will receive 5e10vp, 1E11vp and 1E11vp of Ad5-nCoV, respectively.

The primary indicator is to see whether there are adverse reactions seven days after injection, and the secondary indicators are whether adverse reactions are observed 28 days after injection or severe adverse reactions six months after the injection.

Researchers will also look for anti-S antibody immunoglobulin G, neutralizing antibodies against SARS-CoV-2, neutralizing antibodies against Ad5 and specific T-cell responses as secondary indicators.

Ad5-nCoV is developed with Cansino’s adenovirus-based viral vector vaccine technology platform, which utilizes adenoviruses as viral vectors to deliver vaccine antigens to the human cell. Previously, the technology platform was key in enabling Cansino to translate its Ebola virus disease vaccine, Ad5-EBOV, from a concept to an approved product in merely three years.

A forerunner in China’s vaccine space, Cansino came to the industry’s attention when its Ad5-EBOV became the first approved Ebola virus vaccine in China for emergency use and as part of the national stockpile in October 2017.

Leveraging the existing technology platform, Cansino said results from preclinical animal studies of Ad5-nCoV show that the vaccine candidate can induce strong immune responses in animal models. The preclinical animal safety studies demonstrated a good safety profile.

“We have completed the necessary preclinical steps for vaccine R&D. To date, the GMP clinical batches have passed quality testing and are ready for the phase I clinical trial,” the company said.

Stepping carefully

A cautious scientist, Yu stressed the importance of safety in vaccine development and warned that there is more to think of than just the speed of development.

“We need speed, but we still need quality. We d

on’t want to introduce a second harm to people. It is critically important to check every step,” Yu said in a webinar organized by Chinese CRO Wuxi Apptec last month.

He said although the existing technology platform can speed up the development of a vaccine, there are issues to address before applying any vaccine to a human. Animal models should be available before moving any vaccine candidates into human trials so as to produce a vaccine that will eventually work without concerns such as disease enhancement.

“Even though we have learned from MERS and SARS, COVID-19 is still a new virus that behaves very differently, so we should really get some basic understanding,” Yu said.

And in developing a vaccine for emergency response, Yu said it would be ideal to require just one dose, and developers need to consider the manufacturability of the vaccine in order to benefit more people.

On March 16, the NIH said a phase I trial has begun in Seattle. The vaccine candidate, known as mRNA-1273 and co-developed by NIH and Moderna Inc., encodes viral spike (S) protein for prevention of COVID-19.

https://www.bioworld.com/articles/433791-china-approves-first-homegrown-covid-19-vaccine-to-enter-clinical-trials?id=433791-china-approves-first-homegrown-covid-19-vaccine-to-enter-clinical-trials

First drug repurposing trial for COVID-19 falls flat

By Anette Breindl

The first attempt at using existing drugs to treat patients infected with SARS-CoV-2 has yielded disappointing results.

In 200 hospitalized patients with severe COVID-19, a 14-day regimen of twice-daily treatment with Kaletra/Aluvia (lopinavir/ritonavir, Abbvie Inc.) did not hasten recovery when added to the standard of care. Chinese clinicians led by Bin Cao of the National Clinical Research Center for Respiratory Diseases reported their findings in the March 19, 2020, issue of The New England Journal of Medicine.

Lopinavir is a protease inhibitor, while ritonavir increases the half-life of lopinavir by inhibiting its metabolism. The drug was tested because screening studies had flagged it as having activity against MERS-CoV, which has led to a clinical trial of a combination of Kaletra/Aluvia and interferon-beta for the treatment of MERS-CoV in the Kingdom of Saudi Arabia.

In the COVID-19 trial, 199 patients were treated, split evenly between drug and standard-of-care groups. The study’s primary endpoint, time to improvement, was the same between the two groups, both of which took 16 days to improve. Mortality and viral load at various time points were also not different.

In an editorial published alongside the paper, Lindsey Baden, of Harvard Medical School, and Eric Rubin, of the Harvard TH Chan School of Public Health, wrote that “the results for certain secondary endpoints are intriguing,” but also acknowledged that those results were hard to interpret, due to a mix of trial size, possible differences in illness severity at baseline, and the fact that the trial was randomized but not blinded.

And if certain endpoints were intriguing, others were discouraging. In particular, viral loads did not differ between the groups, tellingly so, according to Baden and Rubin. “Since the drug is supposed to act as a direct inhibitor of viral replication, the inability to suppress the viral load and the persistent detection of viral nucleic acid strongly suggest that it did not have the activity desired,” they wrote. “Thus, although some effect of the drug is possible, it was not easily observed.”

It is possible that larger trials will yet uncover an effect of Kaletra/Aluvia. But for now, perhaps the best hope is that other drugs will work better – in particular, remdesivir (Gilead Sciences Inc.), which was originally developed for Ebola virus disease, but proved less effective there than several other options.

A paper in the Jan. 10, 2020, issue of Nature Communications investigated the effects of Aluvia on MERS-CoV in mouse experiments, where it showed ho-hum effects. The authors of the Nature Communications paper reported that “prophylactic [Kaletra/Aluvia plus interferon-beta] slightly reduces viral loads without impacting other disease parameters.”

But remdesivir was more effective. “Both prophylactic and therapeutic [remdesivir] improve pulmonary function and reduce lung viral loads and severe lung pathology” in a mouse model of MERS, the authors reported.

Remdesivir is in both an NIH-sponsored clinical trial and a Japanese-Chinese trial as potential COVID-19 treatment, after a January case report of a patient who showed rapid improvement after he was treated with the drug for COVID-19.

Though the Kaletra/Aluvia trial’s results were not as hoped, Baden and Rubin noted that the trial itself was an encouraging bit of news, as well as a “heroic effort…. As we saw during the 2014 Ebola outbreak in West Africa, obtaining high-quality clinical trial data to guide the care of patients is extremely difficult in the face of an epidemic, and the feasibility of a randomized design has been called into question. Yet Cao’s group of determined investigators not only succeeded but ended up enrolling a larger number of patients (199) than originally targeted.”

Coronavirus update: Virus could live up to 24 hours on cardboard, 3 days on plastic and steel, study says

Coronavirus could live up to three days on a plastic or stainless steel doorknob, researchers found.

A preliminary study released last week also showed that the virus could be aerosolized, meaning it could potentially live in the air. It could live up to three days on some surfaces.

Though it’s widely acknowledged that coronavirus could be spread via respiratory droplet — the result of coughing or sneezing — there’s not much information yet on how the virus lives on surfaces or in the air.

The new research could inform cleaning recommendations and other measures taken to reduce community spread.

The U.S. Centers for Disease Control and Prevention recommend routine cleaning of high-touch surfaces, like door handles, high-backed chairs, light switches and remote controls.

The study, released last week, is not yet peer-reviewed. That means that other experts have not had the chance to check the quality of the research, and its not advised that doctors use it in a clinical setting. But as people try to cope with the disease, it’s being widely read.

Here’s how long the study indicated the virus could live on various surfaces:

The air: Researchers found the virus could be detected in aerosols up to 4 hours after it was sprayed.

Copper: Up to 4 hours

Cardboard: Up to 24 hours

Plastic: 2-3 days

Stainless steel: 2-3 days

https://www.cleveland.com/news/2020/03/coronavirus-update-virus-could-live-up-to-24-hours-on-cardboard-3-days-on-plastic-and-steel-study-says.html?utm_source=Newsletter&utm_medium=Newsletter%20-%20Wake%20Up&utm_campaign=Newsletter:%20The%20Wake%20Up

Possible Biological Explanations for Kids’ Escape from COVID-19


Infected children may harbor SARS-CoV-2 while showing less-severe symptoms than adults. Their young immune systems, ACE2 receptor levels, and even exposure to other coronaviruses might play a role in their resilience.

by Anthony King

Since SARS-CoV-2, the virus responsible for the COVID-19 pandemic, was first recognized as a close cousin of the virus that caused the SARS outbreak of 2003, scientists have looked to the experience of that earlier epidemic to glean insight into the current global health crisis.

Kids were largely unaffected in the original SARS outbreak. In Hong Kong, no one under the age of 24 years died, while more than 50 percent of patients over 65 succumbed to the infection. Globally, less than 10 percent of those diagnosed with SARS were children, and only 5 percent of them required intensive care.

“There were repeated incursions from animals to humans, with both SARS and MERS, and the assumption by many was maybe children are just not exposed to the infected civet cats or camels,” says virologist Kanta Subbarao of the Doherty Institute in Melbourne, Australia.

A very similar pattern has been observed with the new outbreak of COVID-19. Within Wuhan, no children tested positive between November 2019 and the second week of January, and the elderly proved particularly vulnerable. The Chinese Centers for Disease Control and Prevention reported in mid-February that out of 44,672 confirmed cases of COVID-19, 86.6 percent were between 30 and 79 years of age. The oldest among them were at greatest risk of death. And in a study of 1,099 patients in China, just 0.9 percent of confirmed cases were under the age of nine, while only 1.2 percent were between 10 and 19 years old.

Now, evidence is emerging that while few children suffer severely from COVID-19, they do get infected. A recent study even found evidence of viral excretion in children from rectal swabs. “At the moment it doesn’t seem to be causing much in the way of serious disease in young people, particularly children,” says virologist Robin Shattock of Imperial College London. However, he adds, “it is quite likely that children are an important source of the virus.”

“There is good evidence that children get infected and have a fairly high titre of virus but just don’t have serious disease,” agrees Ralph Baric, a coronavirus researcher at the University of North Carolina at Chapel Hill. He saw a similar phenomenon in his mouse studies with the original SARS coronavirus (SARS-CoV). Although SARS-CoV can replicate fairly well, “younger animals are really resistant to infection in terms of the disease,” he says. When Baric tested older animals, he says, the severity of SARS illnesses rose. In one experiment, one-fifth of mice infected with SARS aged 3–4 weeks died, whereas all of the mice 7–8 weeks old died.

Subbarao has also found that young adult mice, at six weeks old, can clear SARS-CoV with no significant clinical symptoms. “When we used the same virus in 12-month-old mice, which is by no means really old, there were more clinical signs,” she says. These results indicate that both the original SARS-CoV and the one circulating now may infect children, but not make them ill. “The animal data supports the idea that they are infected but do not develop disease, because our young mice have the same levels of virus as old mice but do not get sick,” says Stanley Perlman, an immunologist at the University of Iowa. “It is not a question of infection.”

The work on mice is now being supported by emerging epidemiological data. A preprint posted to medRxiv on March 4 analyzed 391 COVID-19 cases and 1,286 of their close contacts. The authors concluded that children are at a similar risk of infection as the general population, though less likely to have severe symptoms.

An aging immune system

One explanation for the correlation between age and disease severity is that as humans’ immune systems age, more cells become inactive. “As you age, your immune system undergoes senescence and loses its capacity to respond as effectively or be regulated as effectively,” says Baric.

Another explanation, which Perlman favors, is tied to the aging lung environment. In order for individuals not to easily develop asthma or overreact to environmental irritants such as pollen or pollution, aged lungs counter the usual immune reaction with some tamping down of inflammation. As a result, says Perlman, the lungs do not respond quickly enough to a viral infection. For instance, when his group makes the lungs of older mice more like those of young mice by altering prostaglandins, compounds that respond to tissue injury, “then the mice do well and they can clear the [SARS] infection and don’t get sick,” says Perlman.

In experiments reported in 2010, Perlman and his colleagues showed that T cells are especially important in clearing viruses from mice infected with SARS-CoV. “It is almost certain we need both an antibody- and T cell–response to do well” against COVID-19 infection, says Perlman. His suspicion is that the young immune system and its efficient T cells do a superior job of responding to SARS-CoV-2. A 2010 study led by Subbarao also stressed the importance of CD4+ helper T cells, which stimulate B cells to make antibodies against pathogens, in controlling SARS-CoV infection in mice.

“It could be that the type of T cell that dominates early in life is better at repelling this virus,” says immunologist Kingston Mills of Trinity College Dublin. He also proposes that young children’s higher production of a type of T cell called Th2 might guard against runaway inflammatory responses to SARS-CoV-2. Perlman doesn’t support the proposed role of a bias toward Th2 cells in the case of this viral infection, but he does agree that an immune overreaction is problematic.

“The innate response is delayed in the elderly, so ends up playing catch-up and is exuberant,” Perlman writes in an email to The Scientist.

ACE2 receptor

SARS-CoV and SARS-CoV-2 both use the same keyhole to enter cells, the ACE2 receptor. There’s an abundance of this receptor in cells in the lower lung, which may explain the high incidence of pneumonia and bronchitis in those with severe COVID-19 infection. A recent study showed that ACE2 is also highly expressed in the mouth and tongue, granting the virus easy access to a new host. ACE2 receptor abundance goes down in the elderly in all these tissues, but, counterintuitively, this might place them at a greater risk of severe illness.

This is because the ACE2 enzyme is an important regulator of the immune response, especially inflammation. It protects mice against acute lung injury triggered by sepsis. And a 2014 study found that the ACE2 enzyme offers protection against lethal avian influenza. Some patients with better outcomes had higher levels of the protein in their sera, and turning off the gene for ACE2 led to severe lung damage in mice infected with H5N1, while treating mice with human ACE2 dampened lung injury.

A fall in ACE2 activity in the elderly is partly to blame for humans’ poorer ability to put the brakes on our inflammatory response as we age, according to emailed comments from Hongpeng Jia of Johns Hopkins Medicine. Reduced abundance of ACE2 receptors in older adults could leave them less able to cope with SARS-CoV-2, says Baric, though the hypothesis still needs more research.

Exposure to other coronaviruses

There are four other coronaviruses that infect humans, with symptoms typical of a common cold. These viruses are common in children. “We don’t know which of them, if any, might provide some cross immunity,” says Subbarao. It could be that immunity to viral proteins, obtained from circulating “common cold” viruses, moderates the course of COVID-19.

This is a “hand-waving hypothesis,” Subbarao adds, but one that is worth testing. Recently, it has been suggested that plasma from people who’ve recovered from COVID-19 could be transfused into patients infected with SARS-CoV-2 to treat them.

“I don’t think anyone in the field knows why the disease is less robust in extremely young animals or humans,” Baric tells The Scientist. It is also still too early to know how much learned from the first SARS coronavirus applies to SARS-CoV-2. “SARS-CoV-1 will tell us a lot, but I think there is new information we are going to learn about SARS-CoV-2,” Perlman acknowledges.

https://www.the-scientist.com/news-opinion/possible-biological-explanations-for-kids-escape-from-covid-19-67273?utm_campaign=TS_DAILY%20NEWSLETTER_2020&utm_source=hs_email&utm_medium=email&utm_content=84840060&_hsenc=p2ANqtz-_QBhFeETnCdgO-hMkDQF0G0KlDcX_Lu5wb8FR6n0M2nggE4q841plJ_OtOZv-bbBKiOgV9emt0eX9q7t-0l6Og3pcCVQ&_hsmi=84840060