Posts Tagged ‘Case Western Reserve University’

Within four hours of a traumatic experience, certain physiological markers—namely, sweating—are higher in people who go on to develop posttraumatic stress disorder (PTSD), according to a new study by a researcher at Case Western Reserve University and other institutions.

Around 90% of people who experience a traumatic event do not develop PTSD, according to existing data and research, making the medical community eager for better insights into the 10% who do—and for how to best treat these patients.

The study, conducted at Atlanta’s Grady Memorial Hospital, found that micro perspirations—detected non-invasively by a mobile device in an emergency department—can be plugged into a new mathematical model developed by the researchers to help predict who may be more at risk for developing PTSD.

The findings are especially important for targeting early treatment efforts and prevention of the disorder, said Alex Rothbaum, a pre-doctoral researcher in the Department of Psychological Sciences in the College of Arts and Sciences at Case Western Reserve.

“With PTSD, there is a need for more reliable and immediate patient information, especially in situations where research suggests people may underreport their own symptoms, such as with men, and those who live in violent neighborhoods or are on active duty,” said Rothbaum, a co-author of the study, which was published in the journal Chronic Stress.

“While skin is always secreting sweat, our method can discern meaningful, actionable information from perspirations too small for the naked eye to see,” he added.

The measurement differs from traditional practices to diagnose PTSD, which look for psychological differences in patients based on self-reported data and clusters of symptoms defined by the Diagnostic and Statistical Manual of Mental Disorders (often referred to as the DSM) published by the American Psychiatric Association.

“Eventually, this finding may help contribute to changes in how we diagnose and treat PTSD, pointing us toward which patients would do better in therapy, with medication, or a combination of the two—or no treatment at all,” said Rothbaum.

New testing device: less expensive, more accessible
Researchers hope the PTSD test can become available and standard in emergency departments, aided by the recent development of a practical and inexpensive device that can plug into common tablets and can measure “skin conductance response”—a measure of sweating.

Before, such tests could only be conducted on a large stand-alone machine costing upwards of $10,000. While the new device lacks the sensitivity of its more expensive counterpart, the readings it provides can be used to determine who should continue with additional testing and who is not at risk for developing PTSD.

The study—which included nearly 100 patients—was prompted, in part, by recent research showing the ineffectiveness of current methods practiced with patients immediately after traumas, known as critical incident stress debriefing and psychological debriefing.

Both the new method and model created by researchers will need to be further validated by a larger study underway with a National Institutes of Health grant.

The research
The study was co-authored with researchers at Emory University School of Medicine: Rebecca Hinrichs, Sanne J. H. van Rooij, Jennifer Stevens, Jessica Maples-Keller and Barbara O. Rothbaum; Vasiliki Michopoulos of Emory and Yerkes National Primate Research Center; Katharina Schultebraucks and Isaac Galatzer-Levy of New York University School of Medicine; Sterling Winters of Wayne State University; Tanja Jovanovic of Emory and Wayne State; and Kerry J. Ressler of Emory and Harvard/ McLean Hospital.

The research was supported by the National Institute of Mental Health and a Brain and Behavior Research Foundation NARSAD Independent Investigator Award.

Sweating is a clue into who develops PTSD—and who doesn’t

Advertisements


3D reconstruction of a serotonin receptor generated by cryo-electron microscopy

by Rebecca Pool

Claiming a world first and using cryo-electron microscopy, researchers from Case Western Reserve University School of Medicine, US, have observed full-length serotonin receptors. The proteins are common drug targets, and the new images provide details about molecular binding sites that could lead to more precise drug design. Serotonin receptors, which reside in cell membranes throughout the body, are highly dynamic and difficult to image. In the past, the receptors have been sectioned into pieces to study, but by capturing full-length samples, researchers have revealed how different portions interact.

Dr Sandip Basak from Physiology and Biophysics, and colleagues, describe ‘a finely tuned orchestration of three domain movements’ that allows the receptors to elegantly control passageways across cell membranes. “The serotonin receptor acts as a gateway, or channel, from outside the cell to inside,” he says. “When serotonin binds onto the receptor, the channel switches conformation from closed to open. It eventually twists into a ‘desensitized’ state, where the channel closes but serotonin remains attached,” he adds. “This prevents it from being reactivated.”

For this study, the researchers used a FEI Titan Krios microscope, operating at 300 kV, and equipped with a Gatan K2-Summit direct detector camera, at the National Cryo-Electron Microscopy Facility in Frederick, Maryland.

“Successful design of safer therapeutics [for cancer therapies and gastrointestinal diseases] has slowed because there is currently a limited understanding of the structure of the serotonin receptor itself, and what happens after serotonin binds,” says research leader, Professor Sudha Chakrapani. “Our new structure of the serotonin receptor in the resting state has the potential to serve as a structural blueprint to drive targeted drug design and better therapeutic strategies.”

This research is published in Nature Communications.

https://microscopy-analysis.com/editorials/editorial-listings/first-images-full-length-receptor-structure