Posts Tagged ‘brain-computer interface’

by John H. Richardson

In an ordinary hospital room in Los Angeles, a young woman named Lauren Dickerson waits for her chance to make history.

She’s 25 years old, a teacher’s assistant in a middle school, with warm eyes and computer cables emerging like futuristic dreadlocks from the bandages wrapped around her head. Three days earlier, a neurosurgeon drilled 11 holes through her skull, slid 11 wires the size of spaghetti into her brain, and connected the wires to a bank of computers. Now she’s caged in by bed rails, with plastic tubes snaking up her arm and medical monitors tracking her vital signs. She tries not to move.

The room is packed. As a film crew prepares to document the day’s events, two separate teams of specialists get ready to work—medical experts from an elite neuroscience center at the University of Southern California and scientists from a technology company called Kernel. The medical team is looking for a way to treat Dickerson’s seizures, which an elaborate regimen of epilepsy drugs controlled well enough until last year, when their effects began to dull. They’re going to use the wires to search Dickerson’s brain for the source of her seizures. The scientists from Kernel are there for a different reason: They work for Bryan Johnson, a 40-year-old tech entrepreneur who sold his business for $800 million and decided to pursue an insanely ambitious dream—he wants to take control of evolution and create a better human. He intends to do this by building a “neuroprosthesis,” a device that will allow us to learn faster, remember more, “coevolve” with artificial intelligence, unlock the secrets of telepathy, and maybe even connect into group minds. He’d also like to find a way to download skills such as martial arts, Matrix-style. And he wants to sell this invention at mass-market prices so it’s not an elite product for the rich.

Right now all he has is an algorithm on a hard drive. When he describes the neuroprosthesis to reporters and conference audiences, he often uses the media-friendly expression “a chip in the brain,” but he knows he’ll never sell a mass-market product that depends on drilling holes in people’s skulls. Instead, the algorithm will eventually connect to the brain through some variation of noninvasive interfaces being developed by scientists around the world, from tiny sensors that could be injected into the brain to genetically engineered neurons that can exchange data wirelessly with a hatlike receiver. All of these proposed interfaces are either pipe dreams or years in the future, so in the meantime he’s using the wires attached to Dickerson’s hippo­campus to focus on an even bigger challenge: what you say to the brain once you’re connected to it.

That’s what the algorithm does. The wires embedded in Dickerson’s head will record the electrical signals that Dickerson’s neurons send to one another during a series of simple memory tests. The signals will then be uploaded onto a hard drive, where the algorithm will translate them into a digital code that can be analyzed and enhanced—or rewritten—with the goal of improving her memory. The algorithm will then translate the code back into electrical signals to be sent up into the brain. If it helps her spark a few images from the memories she was having when the data was gathered, the researchers will know the algorithm is working. Then they’ll try to do the same thing with memories that take place over a period of time, something nobody’s ever done before. If those two tests work, they’ll be on their way to deciphering the patterns and processes that create memories.

Although other scientists are using similar techniques on simpler problems, Johnson is the only person trying to make a commercial neurological product that would enhance memory. In a few minutes, he’s going to conduct his first human test. For a commercial memory prosthesis, it will be the first human test. “It’s a historic day,” Johnson says. “I’m insanely excited about it.”

For the record, just in case this improbable experiment actually works, the date is January 30, 2017.

At this point, you may be wondering if Johnson’s just another fool with too much money and an impossible dream. I wondered the same thing the first time I met him. He seemed like any other California dude, dressed in the usual jeans, sneakers, and T-shirt, full of the usual boyish enthusiasms. His wild pronouncements about “reprogramming the operating system of the world” seemed downright goofy.

But you soon realize this casual style is either camouflage or wishful thinking. Like many successful people, some brilliant and some barely in touch with reality, Johnson has endless energy and the distributed intelligence of an octopus—one tentacle reaches for the phone, another for his laptop, a third scouts for the best escape route. When he starts talking about his neuroprosthesis, they team up and squeeze till you turn blue.

And there is that $800 million that PayPal shelled out for Braintree, the online-­payment company Johnson started when he was 29 and sold when he was 36. And the $100 million he is investing into Kernel, the company he started to pursue this project. And the decades of animal tests to back up his sci-fi ambitions: Researchers have learned how to restore memories lost to brain damage, plant false memories, control the motions of animals through human thought, control appetite and aggression, induce sensations of pleasure and pain, even how to beam brain signals from one animal to another animal thousands of miles away.

And Johnson isn’t dreaming this dream alone—at this moment, Elon Musk and Mark Zuckerberg are weeks from announcing their own brain-hacking projects, the military research group known as Darpa already has 10 under way, and there’s no doubt that China and other countries are pursuing their own. But unlike Johnson, they’re not inviting reporters into any hospital rooms.

Here’s the gist of every public statement Musk has made about his project: (1) He wants to connect our brains to computers with a mysterious device called “neural lace.” (2) The name of the company he started to build it is Neuralink.

Thanks to a presentation at last spring’s F8 conference, we know a little more about what Zuckerberg is doing at Facebook: (1) The project was until recently overseen by Regina Dugan, a former director of Darpa and Google’s Advanced Technology group. (2) The team is working out of Building 8, Zuckerberg’s research lab for moon-shot projects. (3) They’re working on a noninvasive “brain–computer speech-to-text interface” that uses “optical imaging” to read the signals of neurons as they form words, find a way to translate those signals into code, and then send the code to a computer. (4) If it works, we’ll be able to “type” 100 words a minute just by thinking.

As for Darpa, we know that some of its projects are improvements on existing technology and some—such as an interface to make soldiers learn faster—sound just as futuristic as Johnson’s. But we don’t know much more than that. That leaves Johnson as our only guide, a job he says he’s taken on because he thinks the world needs to be prepared for what is coming.

All of these ambitious plans face the same obstacle, however: The brain has 86 billion neurons, and nobody understands how they all work. Scientists have made impressive progress uncovering, and even manipulating, the neural circuitry behind simple brain functions, but things such as imagination or creativity—and memory—are so complex that all the neuroscientists in the world may never solve them. That’s why a request for expert opinions on the viability of Johnson’s plans got this response from John Donoghue, the director of the Wyss Center for Bio and Neuroengineering in Geneva: “I’m cautious,” he said. “It’s as if I asked you to translate something from Swahili to Finnish. You’d be trying to go from one unknown language into another unknown language.” To make the challenge even more daunting, he added, all the tools used in brain research are as primitive as “a string between two paper cups.” So Johnson has no idea if 100 neurons or 100,000 or 10 billion control complex brain functions. On how most neurons work and what kind of codes they use to communicate, he’s closer to “Da-da” than “see Spot run.” And years or decades will pass before those mysteries are solved, if ever. To top it all off, he has no scientific background. Which puts his foot on the banana peel of a very old neuroscience joke: “If the brain was simple enough for us to understand, we’d be too stupid to understand it.”

I don’t need telepathy to know what you’re thinking now—there’s nothing more annoying than the big dreams of tech optimists. Their schemes for eternal life and floating libertarian nations are adolescent fantasies; their digital revolution seems to be destroying more jobs than it created, and the fruits of their scientific fathers aren’t exactly encouraging either. “Coming soon, from the people who brought you nuclear weapons!”

But Johnson’s motives go to a deep and surprisingly tender place. Born into a devout Mormon community in Utah, he learned an elaborate set of rules that are still so vivid in his mind that he brought them up in the first minutes of our first meeting: “If you get baptized at the age of 8, point. If you get into the priesthood at the age of 12, point. If you avoid pornography, point. Avoid masturbation? Point. Go to church every Sunday? Point.” The reward for a high point score was heaven, where a dutiful Mormon would be reunited with his loved ones and gifted with endless creativity.

When he was 4, Johnson’s father left the church and divorced his mother. Johnson skips over the painful details, but his father told me his loss of faith led to a long stretch of drug and alcohol abuse, and his mother said she was so broke that she had to send Johnson to school in handmade clothes. His father remembers the letters Johnson started sending him when he was 11, a new one every week: “Always saying 100 different ways, ‘I love you, I need you.’ How he knew as a kid the one thing you don’t do with an addict or an alcoholic is tell them what a dirtbag they are, I’ll never know.”

Johnson was still a dutiful believer when he graduated from high school and went to Ecuador on his mission, the traditional Mormon rite of passage. He prayed constantly and gave hundreds of speeches about Joseph Smith, but he became more and more ashamed about trying to convert sick and hungry children with promises of a better life in heaven. Wouldn’t it be better to ease their suffering here on earth?

“Bryan came back a changed boy,” his father says.

Soon he had a new mission, self-assigned. His sister remembers his exact words: “He said he wanted to be a millionaire by the time he was 30 so he could use those resources to change the world.”

His first move was picking up a degree at Brigham Young University, selling cell phones to help pay the tuition and inhaling every book that seemed to promise a way forward. One that left a lasting impression was Endurance, the story of Ernest Shackleton’s botched journey to the South Pole—if sheer grit could get a man past so many hardships, he would put his faith in sheer grit. He married “a nice Mormon girl,” fathered three Mormon children, and took a job as a door-to-door salesman to support them. He won a prize for Salesman of the Year and started a series of businesses that went broke—which convinced him to get a business degree at the University of Chicago.

When he graduated in 2008, he stayed in Chicago and started Braintree, perfecting his image as a world-beating Mormon entrepreneur. By that time, his father was sober and openly sharing his struggles, and Johnson was the one hiding his dying faith behind a very well-protected wall. He couldn’t sleep, ate like a wolf, and suffered intense headaches, fighting back with a long series of futile cures: antidepressants, biofeedback, an energy healer, even blind obedience to the rules of his church.

In 2012, at the age of 35, Johnson hit bottom. In his misery, he remembered Shackleton and seized a final hope—maybe he could find an answer by putting himself through a painful ordeal. He planned a trip to Mount Kilimanjaro, and on the second day of the climb he got a stomach virus. On the third day he got altitude sickness. When he finally made it to the peak, he collapsed in tears and then had to be carried down on a stretcher. It was time to reprogram his operating system.

The way Johnson tells it, he started by dropping the world-beater pose that hid his weakness and doubt. And although this may all sound a bit like a dramatic motivational talk at a TED conference, especially since Johnson still projects the image of a world-beating entrepreneur, this much is certain: During the following 18 months, he divorced his wife, sold Braintree, and severed his last ties to the church. To cushion the impact on his children, he bought a house nearby and visited them almost daily. He knew he was repeating his father’s mistakes but saw no other option—he was either going to die inside or start living the life he always wanted.

He started with the pledge he made when he came back from Ecuador, experimenting first with a good-government initiative in Washington and pivoting, after its inevitable doom, to a venture fund for “quantum leap” companies inventing futuristic products such as human-­organ-­mimicking silicon chips. But even if all his quantum leaps landed, they wouldn’t change the operating system of the world.

Finally, the Big Idea hit: If the root problems of humanity begin in the human mind, let’s change our minds.

Fantastic things were happening in neuroscience. Some of them sounded just like miracles from the Bible—with prosthetic legs controlled by thought and microchips connected to the visual cortex, scientists were learning to help the lame walk and the blind see. At the University of Toronto, a neurosurgeon named Andres Lozano slowed, and in some cases reversed, the cognitive declines of Alzheimer’s patients using deep brain stimulation. At a hospital in upstate New York, a neuro­technologist named Gerwin Schalk asked computer engineers to record the firing patterns of the auditory neurons of people listening to Pink Floyd. When the engineers turned those patterns back into sound waves, they produced a single that sounded almost exactly like “Another Brick in the Wall.” At the University of Washington, two professors in different buildings played a videogame together with the help of electroencephalography caps that fired off electrical pulses—when one professor thought about firing digital bullets, the other one felt an impulse to push the Fire button.

Johnson also heard about a biomedical engineer named Theodore Berger. During nearly 20 years of research, Berger and his collaborators at USC and Wake Forest University developed a neuroprosthesis to improve memory in rats. It didn’t look like much when he started testing it in 2002—just a slice of rat brain and a computer chip. But the chip held an algorithm that could translate the firing patterns of neurons into a kind of Morse code that corresponded with actual memories. Nobody had ever done that before, and some people found the very idea offensive—it’s so deflating to think of our most precious thoughts reduced to ones and zeros. Prominent medical ethicists accused Berger of tampering with the essence of identity. But the implications were huge: If Berger could turn the language of the brain into code, perhaps he could figure out how to fix the part of the code associated with neurological diseases.

In rats, as in humans, firing patterns in the hippocampus generate a signal or code that, somehow, the brain recognizes as a long-term memory. Berger trained a group of rats to perform a task and studied the codes that formed. He learned that rats remembered a task better when their neurons sent “strong code,” a term he explains by comparing it to a radio signal: At low volume you don’t hear all of the words, but at high volume everything comes through clear. He then studied the difference in the codes generated by the rats when they remembered to do something correctly and when they forgot. In 2011, through a breakthrough experiment conducted on rats trained to push a lever, he demonstrated he could record the initial memory codes, feed them into an algorithm, and then send stronger codes back into the rats’ brains. When he finished, the rats that had forgotten how to push the lever suddenly remembered.

Five years later, Berger was still looking for the support he needed for human trials. That’s when Johnson showed up. In August 2016, he announced he would pledge $100 million of his fortune to create Kernel and that Berger would join the company as chief science officer. After learning about USC’s plans to implant wires in Dickerson’s brain to battle her epilepsy, Johnson approached Charles Liu, the head of the prestigious neurorestoration division at the USC School of Medicine and the lead doctor on Dickerson’s trial. Johnson asked him for permission to test the algorithm on Dickerson while she had Liu’s wires in her hippocampus—in between Liu’s own work sessions, of course. As it happened, Liu had dreamed about expanding human powers with technology ever since he got obsessed with The Six Million Dollar Man as a kid. He helped Johnson get Dickerson’s consent and convinced USC’s institutional research board to approve the experiment. At the end of 2016, Johnson got the green light. He was ready to start his first human trial.

In the hospital room, Dickerson is waiting for the experiments to begin, and I ask her how she feels about being a human lab rat.

“If I’m going to be here,” she says, “I might as well do something useful.”

Useful? This starry-eyed dream of cyborg supermen? “You know he’s trying to make humans smarter, right?”

“Isn’t that cool?” she answers.

Over by the computers, I ask one of the scientists about the multi­colored grid on the screen. “Each one of these squares is an electrode that’s in her brain,” one says. Every time a neuron close to one of the wires in Dickerson’s brain fires, he explains, a pink line will jump in the relevant box.

Johnson’s team is going to start with simple memory tests. “You’re going to be shown words,” the scientist explains to her. “Then there will be some math problems to make sure you’re not rehearsing the words in your mind. Try to remember as many words as you can.”

One of the scientists hands Dickerson a computer tablet, and everyone goes quiet. Dickerson stares at the screen to take in the words. A few minutes later, after the math problem scrambles her mind, she tries to remember what she’d read. “Smoke … egg … mud … pearl.”

Next, they try something much harder, a group of memories in a sequence. As one of Kernel’s scientists explains to me, they can only gather so much data from wires connected to 30 or 40 neurons. A single face shouldn’t be too hard, but getting enough data to reproduce memories that stretch out like a scene in a movie is probably impossible.

Sitting by the side of Dickerson’s bed, a Kernel scientist takes on the challenge. “Could you tell me the last time you went to a restaurant?”

“It was probably five or six days ago,” Dickerson says. “I went to a Mexican restaurant in Mission Hills. We had a bunch of chips and salsa.”

He presses for more. As she dredges up other memories, another Kernel scientist hands me a pair of headphones connected to the computer bank. All I hear at first is a hissing sound. After 20 or 30 seconds go by I hear a pop.

“That’s a neuron firing,” he says.

As Dickerson continues, I listen to the mysterious language of the brain, the little pops that move our legs and trigger our dreams. She remembers a trip to Costco and the last time it rained, and I hear the sounds of Costco and rain.

When Dickerson’s eyelids start sinking, the medical team says she’s had enough and Johnson’s people start packing up. Over the next few days, their algorithm will turn Dickerson’s synaptic activity into code. If the codes they send back into Dickerson’s brain make her think of dipping a few chips in salsa, Johnson might be one step closer to reprogramming the operating system of the world.

But look, there’s another banana peel­—after two days of frantic coding, Johnson’s team returns to the hospital to send the new code into Dickerson’s brain. Just when he gets word that they can get an early start, a message arrives: It’s over. The experiment has been placed on “administrative hold.” The only reason USC would give in the aftermath was an issue between Johnson and Berger. Berger would later tell me he had no idea the experiment was under way and that Johnson rushed into it without his permission. Johnson said he is mystified by Berger’s accusations. “I don’t know how he could not have known about it. We were working with his whole lab, with his whole team.” The one thing they both agree on is that their relationship fell apart shortly afterward, with Berger leaving the company and taking his algorithm with him. He blames the break entirely on Johnson. “Like most investors, he wanted a high rate of return as soon as possible. He didn’t realize he’d have to wait seven or eight years to get FDA approval—I would have thought he would have looked that up.” But Johnson didn’t want to slow down. He had bigger plans, and he was in a hurry.

Eight months later, I go back to California to see where Johnson has ended up. He seems a little more relaxed. On the whiteboard behind his desk at Kernel’s new offices in Los Angeles, someone’s scrawled a playlist of songs in big letters. “That was my son,” he says. “He interned here this summer.” Johnson is a year into a romance with Taryn Southern, a charismatic 31-year-old performer and film producer. And since his break with Berger, Johnson has tripled Kernel’s staff—he’s up to 36 employees now—adding experts in fields like chip design and computational neuroscience. His new science adviser is Ed Boyden, the director of MIT’s Synthetic Neurobiology Group and a superstar in the neuroscience world. Down in the basement of the new office building, there’s a Dr. Frankenstein lab where scientists build prototypes and try them out on glass heads.

When the moment seems right, I bring up the purpose of my visit. “You said you had something to show me?”

Johnson hesitates. I’ve already promised not to reveal certain sensitive details, but now I have to promise again. Then he hands me two small plastic display cases. Inside, two pairs of delicate twisty wires rest on beds of foam rubber. They look scientific but also weirdly biological, like the antennae of some futuristic bug-bot.

I’m looking at the prototypes for Johnson’s brand-new neuromodulator. On one level, it’s just a much smaller version of the deep brain stimulators and other neuromodulators currently on the market. But unlike a typical stimulator, which just fires pulses of electricity, Johnson’s is designed to read the signals that neurons send to other neurons—and not just the 100 neurons the best of the current tools can harvest, but perhaps many more. That would be a huge advance in itself, but the implications are even bigger: With Johnson’s neuromodulator, scientists could collect brain data from thousands of patients, with the goal of writing precise codes to treat a variety of neurological diseases.

In the short term, Johnson hopes his neuromodulator will help him “optimize the gold rush” in neurotechnology—financial analysts are forecasting a $27 billion market for neural devices within six years, and countries around the world are committing billions to the escalating race to decode the brain. In the long term, Johnson believes his signal-reading neuromodulator will advance his bigger plans in two ways: (1) by giving neuroscientists a vast new trove of data they can use to decode the workings of the brain and (2) by generating the huge profits Kernel needs to launch a steady stream of innovative and profitable neural tools, keeping the company both solvent and plugged into every new neuroscience breakthrough. With those two achievements in place, Johnson can watch and wait until neuroscience reaches the level of sophistication he needs to jump-start human evolution with a mind-enhancing neuroprosthesis.

Liu, the neurologist with the Six Million Dollar Man dreams, compares Johnson’s ambition to flying. “Going back to Icarus, human beings have always wanted to fly. We don’t grow wings, so we build a plane. And very often these solutions will have even greater capabilities than the ones nature created—no bird ever flew to Mars.” But now that humanity is learning how to reengineer its own capabilities, we really can choose how we evolve. “We have to wrap our minds around that. It’s the most revolutionary thing in the world.”

The crucial ingredient is the profit motive, which always drives rapid innovation in science. That’s why Liu thinks Johnson could be the one to give us wings. “I’ve never met anyone with his urgency to take this to market,” he says.

When will this revolution arrive? “Sooner than you think,” Liu says.

Now we’re back where we began. Is Johnson a fool? Is he just wasting his time and fortune on a crazy dream? One thing is certain: Johnson will never stop trying to optimize the world. At the pristine modern house he rents in Venice Beach, he pours out idea after idea. He even took skepticism as helpful information—when I tell him his magic neuroprosthesis sounds like another version of the Mormon heaven, he’s delighted.

“Good point! I love it!”

He never has enough data. He even tries to suck up mine. What are my goals? My regrets? My pleasures? My doubts?

Every so often, he pauses to examine my “constraint program.”

“One, you have this biological disposition of curiosity. You want data. And when you consume that data, you apply boundaries of meaning-making.”

“Are you trying to hack me?” I ask.

Not at all, he says. He just wants us to share our algorithms. “That’s the fun in life,” he says, “this endless unraveling of the puzzle. And I think, ‘What if we could make the data transfer rate a thousand times faster? What if my consciousness is only seeing a fraction of reality? What kind of stories would we tell?’ ”

In his free time, Johnson is writing a book about taking control of human evolution and looking on the bright side of our mutant humanoid future. He brings this up every time I talk to him. For a long time I lumped this in with his dreamy ideas about reprogramming the operating system of the world: The future is coming faster than anyone thinks, our glorious digital future is calling, the singularity is so damn near that we should be cheering already—a spiel that always makes me want to hit him with a copy of the Unabomber Manifesto.

But his urgency today sounds different, so I press him on it: “How would you respond to Ted Kaczynski’s fears? The argument that technology is a cancerlike development that’s going to eat itself?”

“I would say he’s potentially on the wrong side of history.”

“Yeah? What about climate change?”

“That’s why I feel so driven,” he answered. “We’re in a race against time.”

He asks me for my opinion. I tell him I think he’ll still be working on cyborg brainiacs when the starving hordes of a ravaged planet destroy his lab looking for food—and for the first time, he reveals the distress behind his hope. The truth is, he has the same fear. The world has gotten way too complex, he says. The financial system is shaky, the population is aging, robots want our jobs, artificial intelligence is catching up, and climate change is coming fast. “It just feels out of control,” he says.

He’s invoked these dystopian ideas before, but only as a prelude to his sales pitch. This time he’s closer to pleading. “Why wouldn’t we embrace our own self-directed evolution? Why wouldn’t we just do everything we can to adapt faster?”

I turn to a more cheerful topic. If he ever does make a neuroprosthesis to revolutionize how we use our brain, which superpower would he give us first? Telepathy? Group minds? Instant kung fu?

He answers without hesitation. Because our thinking is so constrained by the familiar, he says, we can’t imagine a new world that isn’t just another version of the world we know. But we have to imagine something far better than that. So he’d try to make us more creative—that would put a new frame on everything.

Ambition like that can take you a long way. It can drive you to try to reach the South Pole when everyone says it’s impossible. It can take you up Mount Kilimanjaro when you’re close to dying and help you build an $800 million company by the time you’re 36. And Johnson’s ambitions drive straight for the heart of humanity’s most ancient dream: For operating system, substitute enlightenment.

By hacking our brains, he wants to make us one with everything.

https://www.wired.com/story/inside-the-race-to-build-a-brain-machine-interface/?mbid=nl_111717_editorsnote_list1_p1

Advertisements

shutterstock_548067946-1068x601

by Edd Gent

Wiring our brains up to computers could have a host of exciting applications – from controlling robotic prosthetics with our minds to restoring sight by feeding camera feeds directly into the vision center of our brains.

Most brain-computer interface research to date has been conducted using electroencephalography (EEG) where electrodes are placed on the scalp to monitor the brain’s electrical activity. Achieving very high quality signals, however, requires a more invasive approach.

Integrating electronics with living tissue is complicated, though. Probes that are directly inserted into the gray matter have been around for decades, but while they are capable of highly accurate recording, the signals tend to degrade rapidly due to the buildup of scar tissue. Electrocorticography (ECoG), which uses electrodes placed beneath the skull but on top of the gray matter, has emerged as a popular compromise, as it achieves higher-accuracy recordings with a lower risk of scar formation.

But now researchers from the University of Texas have created new probes that are so thin and flexible, they don’t elicit scar tissue buildup. Unlike conventional probes, which are much larger and stiffer, they don’t cause significant damage to the brain tissue when implanted, and they are also able to comply with the natural movements of the brain.

In recent research published in the journal Science Advances, the team demonstrated that the probes were able to reliably record the electrical activity of individual neurons in mice for up to four months. This stability suggests these probes could be used for long-term monitoring of the brain for research or medical diagnostics as well as controlling prostheses, said Chong Xie, an assistant professor in the university’s department of biomedical engineering who led the research.

“Besides neuroprosthetics, they can possibly be used for neuromodulation as well, in which electrodes generate neural stimulation,” he told Singularity Hub in an email. “We are also using them to study the progression of neurovascular and neurodegenerative diseases such as stroke, Parkinson’s and Alzheimer’s.”

The group actually created two probe designs, one 50 microns long and the other 10 microns long. The smaller probe has a cross-section only a fraction of that of a neuron, which the researchers say is the smallest among all reported neural probes to the best of their knowledge.

Because the probes are so flexible, they can’t be pushed into the brain tissue by themselves, and so they needed to be guided in using a stiff rod called a “shuttle device.” Previous designs of these shuttle devices were much larger than the new probes and often led to serious damage to the brain tissue, so the group created a new carbon fiber design just seven microns in diameter.

At present, though, only 25 percent of the recordings can be tracked down to individual neurons – thanks to the fact that neurons each have characteristic waveforms – with the rest too unclear to distinguish from each other.

“The only solution, in my opinion, is to have many electrodes placed in the brain in an array or lattice so that any neuron can be within a reasonable distance from an electrode,” said Chong. “As a result, all enclosed neurons can be recorded and well-sorted.”

This a challenging problem, according to Chong, but one benefit of the new probes is that their small dimensions make it possible to implant probes just tens of microns apart rather than the few hundred micron distances necessary with conventional probes. This opens up the possibility of overlapping detection ranges between probes, though the group can still only consistently implant probes with an accuracy of 50 microns.

Takashi Kozai, an assistant professor in the University of Pittsburgh’s bioengineering department who has worked on ultra-small neural probes, said that further experiments would need to be done to show that the recordings, gleaned from anaesthetized rats, actually contained useful neural code. This could include visually stimulating the animals and trying to record activity in the visual cortex.

He also added that a lot of computational neuroscience relies on knowing the exact spacing between recording sites. The fact that flexible probes are able to migrate due to natural tissue movements could pose challenges.

But he said the study “does show some important advances forward in technology development, and most importantly, proof-of-concept feasibility,” adding that “there is clearly much more work necessary before this technology becomes widely used or practical.”

Chong actually worked on another promising approach to neural recording in his previous role under Charles M. Lieber at Harvard University. Last June, the group demonstrated a mesh of soft, conductive polymer threads studded with electrodes that could be injected into the skulls of mice with a syringe where it would then unfurl to both record and stimulate neurons.

As 95 percent of the mesh is free, space cells are able to arrange themselves around it, and the study reported no signs of an elevated immune response after five weeks. But the implantation required a syringe 100 microns in diameter, which causes considerably more damage than the new ultra-small probes developed in Chong’s lab.

It could be some time before the probes are tested on humans. “The major barrier is that this is still an invasive surgical procedure, including cranial surgery and implantation of devices into brain tissue,” said Chong. But, he said, the group is considering testing the probes on epilepsy patients, as it is common practice to implant electrodes inside the skulls of those who don’t respond to medication to locate the area of their brains responsible for their seizures.

https://singularityhub.com/2017/02/27/this-neural-probe-is-so-thin-the-brain-doesnt-know-its-there/?utm_source=Singularity+Hub+Newsletter&utm_campaign=ba3974d7b9-Hub_Daily_Newsletter&utm_medium=email&utm_term=0_f0cf60cdae-ba3974d7b9-58158129

Wendy was barely 20 years old when she received a devastating diagnosis: juvenile amyotrophic lateral sclerosis (ALS), an aggressive neurodegenerative disorder that destroys motor neurons in the brain and the spinal cord.

Within half a year, Wendy was completely paralyzed. At 21 years old, she had to be artificially ventilated and fed through a tube placed into her stomach. Even more horrifyingly, as paralysis gradually swept through her body, Wendy realized that she was rapidly being robbed of ways to reach out to the world.

Initially, Wendy was able to communicate to her loved ones by moving her eyes. But as the disease progressed, even voluntary eye twitches were taken from her. In 2015, a mere three years after her diagnosis, Wendy completely lost the ability to communicate—she was utterly, irreversibly trapped inside her own mind.

Complete locked-in syndrome is the stuff of nightmares. Patients in this state remain fully conscious and cognitively sharp, but are unable to move or signal to the outside world that they’re mentally present. The consequences can be dire: when doctors mistake locked-in patients for comatose and decide to pull the plug, there’s nothing the patients can do to intervene.

Now, thanks to a new system developed by an international team of European researchers, Wendy and others like her may finally have a rudimentary link to the outside world. The system, a portable brain-machine interface, translates brain activity into simple yes or no answers to questions with around 70 percent accuracy.

That may not seem like enough, but the system represents the first sliver of hope that we may one day be able to reopen reliable communication channels with these patients.

Four people were tested in the study, with some locked-in for as long as seven years. In just 10 days, the patients were able to reliably use the system to finally tell their loved ones not to worry—they’re generally happy.

The results, though imperfect, came as “enormous relief” to their families, says study leader Dr. Niels Birbaumer at the University of Tübingen. The study was published this week in the journal PLOS Biology.

Breaking Through

Robbed of words and other routes of contact, locked-in patients have always turned to technology for communication.

Perhaps the most famous example is physicist Stephen Hawking, who became partially locked-in due to ALS. Hawking’s workaround is a speech synthesizer that he operates by twitching his cheek muscles. Jean-Dominique Bauby, an editor of the French fashion magazine Elle who became locked-in after a massive stroke, wrote an entire memoir by blinking his left eye to select letters from the alphabet.

Recently, the rapid development of brain-machine interfaces has given paralyzed patients increasing access to the world—not just the physical one, but also the digital universe.

These devices read brain waves directly through electrodes implanted into the patient’s brain, decode the pattern of activity, and correlate it to a command—say, move a computer cursor left or right on a screen. The technology is so reliable that paralyzed patients can even use an off-the-shelf tablet to Google things, using only the power of their minds.

But all of the above workarounds require one critical factor: the patient has to have control of at least one muscle—often, this is a cheek or an eyelid. People like Wendy who are completely locked-in are unable to control similar brain-machine interfaces. This is especially perplexing since these systems don’t require voluntary muscle movements, because they read directly from the mind.

The unexpected failure of brain-machine interfaces for completely locked-in patients has been a major stumbling block for the field. Although speculative, Birbaumer believes that it may be because over time, the brain becomes less efficient at transforming thoughts into actions.

“Anything you want, everything you wish does not occur. So what the brain learns is that intention has no sense anymore,” he says.


First Contact

In the new study, Birbaumer overhauled common brain-machine interface designs to get the brain back on board.

First off was how the system reads brain waves. Generally, this is done through EEG, which measures certain electrical activity patterns of the brain. Unfortunately, the usual solution was a no-go.

“We worked for more than 10 years with neuroelectric activity [EEG] without getting into contact with these completely paralyzed people,” says Birbaumer.

It may be because the electrodes have to be implanted to produce a more accurate readout, explains Birbaumer to Singularity Hub. But surgery comes with additional risks and expenses to the patients. In a somewhat desperate bid, the team turned their focus to a technique called functional near-infrared spectroscopy (fNIRS).

Like fMRI, fNIRS measures brain activity by measuring changes in blood flow through a specific brain region—generally speaking, more blood flow equals more activation. Unlike fMRI, which requires the patient to lie still in a gigantic magnet, fNIRS uses infrared light to measure blood flow. The light source is embedded into a swimming cap-like device that’s tightly worn around the patient’s head.

To train the system, the team started with facts about the world and personal questions that the patients can easily answer. Over the course of 10 days, the patients were repeatedly asked to respond yes or no to questions like “Paris is the capital of Germany” or “Your husband’s name is Joachim.” Throughout the entire training period, the researchers carefully monitored the patients’ alertness and concentration using EEG, to ensure that they were actually participating in the task at hand.

The answers were then used to train an algorithm that matched the responses to their respective brain activation patterns. Eventually, the algorithm was able to tell yes or no based on these patterns alone, at about 70 percent accuracy for a single trial.

“After 10 years [of trying], I felt relieved,” says Birbaumer. If the study can be replicated in more patients, we may finally have a way to restore useful communication with these patients, he added in a press release.

“The authors established communication with complete locked-in patients, which is rare and has not been demonstrated systematically before,” says Dr. Wolfgang Einhäuser-Treyer to Singularity Hub. Einhäuser-Treyer is a professor at Bielefeld University in Germany who had previously worked on measuring pupil response as a means of communication with locked-in patients and was not involved in this current study.

Generally Happy

With more training, the algorithm is expected to improve even further.

For now, researchers can average out mistakes by repeatedly asking a patient the same question multiple times. And even at an “acceptable” 70 percent accuracy rate, the system has already allowed locked-in patients to speak their minds—and somewhat endearingly, just like in real life, the answer may be rather unexpected.

One of the patients, a 61-year-old man, was asked whether his daughter should marry her boyfriend. The father said no a striking nine out of ten times—but the daughter went ahead anyway, much to her father’s consternation, which he was able to express with the help of his new brain-machine interface.

Perhaps the most heart-warming result from the study is that the patients were generally happy and content with their lives.

We were originally surprised, says Birbaumer. But on further thought, it made sense. These four patients had accepted ventilation to support their lives despite their condition.

“In a sense, they had already chosen to live,” says Birbaumer. “If we could make this technique widely clinically available, it could have a huge impact on the day-to-day lives of people with completely locked-in syndrome.”

For his next steps, the team hopes to extend the system beyond simple yes or no binary questions. Instead, they want to give patients access to the entire alphabet, thus allowing them to spell out words using their brain waves—something that’s already been done in partially locked-in patients but never before been possible for those completely locked-in.

“To me, this is a very impressive and important study,” says Einhäuser-Treyer. The downsides are mostly economical.

“The equipment is rather expensive and not easy to use. So the challenge for the field will be to develop this technology into an affordable ‘product’ that caretakers [sic], families or physicians can simply use without trained staff or extensive training,” he says. “In the interest of the patients and their families, we can hope that someone takes this challenge.”

https://singularityhub.com/2017/02/12/families-finally-hear-from-completely-paralyzed-patients-via-new-mind-reading-device/?utm_source=Singularity+Hub+Newsletter&utm_campaign=978304f198-Hub_Daily_Newsletter&utm_medium=email&utm_term=0_f0cf60cdae-978304f198-58158129

By James Gallagher

An implant that beams instructions out of the brain has been used to restore movement in paralysed primates for the first time, say scientists.

Rhesus monkeys were paralysed in one leg due to a damaged spinal cord. The team at the Swiss Federal Institute of Technology bypassed the injury by sending the instructions straight from the brain to the nerves controlling leg movement. Experts said the technology could be ready for human trials within a decade.

Spinal-cord injuries block the flow of electrical signals from the brain to the rest of the body resulting in paralysis. It is a wound that rarely heals, but one potential solution is to use technology to bypass the injury.

In the study, a chip was implanted into the part of the monkeys’ brain that controls movement. Its job was to read the spikes of electrical activity that are the instructions for moving the legs and send them to a nearby computer. It deciphered the messages and sent instructions to an implant in the monkey’s spine to electrically stimulate the appropriate nerves. The process all takes place in real time. The results, published in the journal Nature, showed the monkeys regained some control of their paralysed leg within six days and could walk in a straight line on a treadmill.

Dr Gregoire Courtine, one of the researchers, said: “This is the first time that a neurotechnology has restored locomotion in primates.” He told the BBC News website: “The movement was close to normal for the basic walking pattern, but so far we have not been able to test the ability to steer.” The technology used to stimulate the spinal cord is the same as that used in deep brain stimulation to treat Parkinson’s disease, so it would not be a technological leap to doing the same tests in patients. “But the way we walk is different to primates, we are bipedal and this requires more sophisticated ways to stimulate the muscle,” said Dr Courtine.

Jocelyne Bloch, a neurosurgeon from the Lausanne University Hospital, said: “The link between decoding of the brain and the stimulation of the spinal cord is completely new. “For the first time, I can image a completely paralysed patient being able to move their legs through this brain-spine interface.”

Using technology to overcome paralysis is a rapidly developing field:
Brainwaves have been used to control a robotic arm
Electrical stimulation of the spinal cord has helped four paralysed people stand again
An implant has helped a paralysed man play a guitar-based computer game

Dr Mark Bacon, the director of research at the charity Spinal Research, said: “This is quite impressive work. Paralysed patients want to be able to regain real control, that is voluntary control of lost functions, like walking, and the use of implantable devices may be one way of achieving this. The current work is a clear demonstration that there is progress being made in the right direction.”

Dr Andrew Jackson, from the Institute of Neuroscience and Newcastle University, said: “It is not unreasonable to speculate that we could see the first clinical demonstrations of interfaces between the brain and spinal cord by the end of the decade.” However, he said, rhesus monkeys used all four limbs to move and only one leg had been paralysed, so it would be a greater challenge to restore the movement of both legs in people. “Useful locomotion also requires control of balance, steering and obstacle avoidance, which were not addressed,” he added.

The other approach to treating paralysis involves transplanting cells from the nasal cavity into the spinal cord to try to biologically repair the injury. Following this treatment, Darek Fidyka, who was paralysed from the chest down in a knife attack in 2010, can now walk using a frame.

Neither approach is ready for routine use.

http://www.bbc.com/news/health-37914543

Thanks to Kebmodee for bringing this to the It’s Interesting community.

Frank Swain has been going deaf since his 20s. Now he has hacked his hearing so he can listen in to the data that surrounds us.

I am walking through my north London neighbourhood on an unseasonably warm day in late autumn. I can hear birds tweeting in the trees, traffic prowling the back roads, children playing in gardens and Wi-Fi leaching from their homes. Against the familiar sounds of suburban life, it is somehow incongruous and appropriate at the same time.

As I approach Turnpike Lane tube station and descend to the underground platform, I catch the now familiar gurgle of the public Wi-Fi hub, as well as the staff network beside it. On board the train, these sounds fade into silence as we burrow into the tunnels leading to central London.

I have been able to hear these fields since last week. This wasn’t the result of a sudden mutation or years of transcendental meditation, but an upgrade to my hearing aids. With a grant from Nesta, the UK innovation charity, sound artist Daniel Jones and I built Phantom Terrains, an experimental tool for making Wi-Fi fields audible.

Our modern world is suffused with data. Since radio towers began climbing over towns and cities in the early 20th century, the air has grown thick with wireless communication, the platform on which radio, television, cellphones, satellite broadcasts, Wi-Fi, GPS, remote controls and hundreds of other technologies rely. And yet, despite wireless communication becoming a ubiquitous presence in modern life, the underlying infrastructure has remained largely invisible.

Every day, we use it to read the news, chat to friends, navigate through cities, post photos to our social networks and call for help. These systems make up a huge and integral part of our lives, but the signals that support them remain intangible. If you have ever wandered in circles to find a signal for your cellphone, you will know what I mean.

Phantom Terrains opens the door to this world to a small degree by tuning into these fields. Running on a hacked iPhone, the software exploits the inbuilt Wi-Fi sensor to pick up details about nearby fields: router name, signal strength, encryption and distance. This wasn’t easy. Reams of cryptic variables and numerical values had to be decoded by changing the settings of our test router and observing the effects.

“On a busy street, we may see over a hundred independent wireless access points within signal range,” says Jones. The strength of the signal, direction, name and security level on these are translated into an audio stream made up of a foreground and background layer: distant signals click and pop like hits on a Geiger counter, while the strongest bleat their network ID in a looped melody. This audio is streamed constantly to a pair of hearing aids donated by US developer Starkey. The extra sound layer is blended with the normal output of the hearing aids; it simply becomes part of my soundscape. So long as I carry my phone with me, I will always be able to hear Wi-Fi.

Silent soundscape

From the roar of Oxford Circus, I make my way into the close silence of an anechoic booth on Harley Street. I have been spending a lot of time in these since 2012, when I was first diagnosed with hearing loss. I have been going deaf since my 20s, and two years ago I was fitted with hearing aids which instantly brought a world of missing sound back to my ears, although it took a little longer for my brain to make sense of it.

Recreating hearing is an incredibly difficult task. Unlike glasses, which simply bring the world into focus, digital hearing aids strive to recreate the soundscape, amplifying useful sound and suppressing noise. As this changes by the second, sorting one from the other requires a lot of programming.

In essence, I am listening to a computer’s interpretation of the soundscape, heavily tailored to what it thinks I need to hear. I am intrigued to see how far this editorialisation of my hearing can be pushed. If I have to spend my life listening to an interpretative version of the world, what elements could I add? The data that surrounds me seems a good place to start.

Mapping digital fields isn’t a new idea. Timo Arnall’s Light Painting Wi-Fi saw the artist and his collaborators build a rod of LEDs that lit up when exposed to digital signals, and carried it through the city at night. Captured in long exposure photographs, the topographies of wireless networks appear as a ghostly blue ribbon that waxes and wanes to the strength of nearby signals, revealing the digital landscape.

“Just as the architecture of nearby buildings gives insight to their origin and purpose, we can begin to understand the social world by examining the network landscape,” says Jones. For example, by tracing the hardware address transmitted with the Wi-Fi signal, the Phantom Terrains software can trace a router’s origin. We found that residential areas were full of low-security routers whereas commercial districts had highly encrypted routers and a higher bandwidth.

Despite the information gathered, most people would balk at the idea of being forced to listen to the hum and crackle of invisible fields all day. How long I will tolerate the additional noise in my soundscape remains to be seen. But there is more to the project than a critique of digital transparency.

With the advent of the internet of things, our material world is becoming ever more draped in sensors, and it is important to think about how we might make sense of all this information. Hearing is a fantastic platform for interpreting dynamic, continuous, broad spectrum data.

Its use in this way is being aided by a revolution in hearing technology. The latest models, such as the Halo brand used in our project and ReSound’s Linx, boast a specialised low-energy Bluetooth function that can link to compatible gadgets. This has a host of immediate advantages, such as allowing people to fine-tune their hearing aids using a smartphone as an interface. More crucially, the continuous connectivity elevates hearing aids to something similar to Google Glass – an always-on, networked tool that can seamlessly stream data and audio into your world.

Already, we are talking to our computers more, using voice-activated virtual assistants such as Apple’s Siri, Microsoft’s Cortana and OK Google. Always-on headphones that talk back, whispering into our ear like discreet advisers, might well catch on ahead of Google Glass.

“The biggest challenge is human,” says Jones. “How can we create an auditory representation that is sufficiently sophisticated to express the richness and complexity of an ever-changing network infrastructure, yet unobtrusive enough to be overlaid on our normal sensory experience without being a distraction?”

Only time will tell if we have succeeded in this respect. If we have, it will be a further step towards breaking computers out of the glass-fronted box they have been trapped inside for the last 50 years.

Auditory interfaces also prompt a rethink about how we investigate data and communicate those findings, setting aside the precise and discrete nature of visual presentation in favour of complex, overlapping forms. Instead of boiling the stock market down to the movement of one index or another, for example, we could one day listen to the churning mass of numbers in real time, our ears attuned for discordant melodies.

In Harley Street, the audiologist shows me the graphical results of my tests. What should be a wide blue swathe – good hearing across all volume levels and sound frequencies – narrows sharply, permanently, at one end.

There is currently no treatment that can widen this channel, but assistive hearing technology can tweak the volume and pitch of my soundscape to pack more sound into the space available. It’s not much to work with, but I’m hoping I can inject even more into this narrow strait, to hear things in this world that nobody else can.

http://www.newscientist.com/article/mg22429952.300-the-man-who-can-hear-wifi-wherever-he-walks.html?full=true