Posts Tagged ‘blue light’

by Ed Cara

People who only occasionally fall down an internet rabbit hole on their smartphones late at night might be able to rest easier—at least according to the results of a new study in mice. Researchers found that short bursts of light exposure at night won’t necessarily disrupt your internal clock, including sleep habits.

The researchers used mice to study the circadian rhythm. In both mice and humans, the circadian rhythm is primarily controlled by the brain’s suprachiasmatic nucleus (SCN), a tiny region found in the hypothalamus. One crucial aspect of the SCN involves regulating our sleep/wake, or light/dark, cycle. It’s long been thought that any kind of light exposure our eyes take in affects the SCN, and thus, can affect our sleep.

“Light information comes into the SCN, and that’s what synchronizes all of the body’s clocks to the light/dark cycle,” said lead author Tiffany Schmidt, a neurogeneticist at Northwestern, in a release from the university. “This one master pacemaker makes sure everything is in sync.”

Schmidt and her team wanted to test this long-held theory that the SCN responds to any light exposure. So they bred mice that had light-sensitive nerve cells in the retina that were only capable of communicating with the SCN. Then they exposed these mice to light for short periods of time.

Because mice, unlike people, are nocturnal, the light should have made them want to fall asleep. But they instead just carried out on with their day, sleeping and waking as normal. Their body temperature, which fluctuates predictably before, during, and after sleep, also followed the same pattern seen in mice with normal circadian rhythms.

What this could mean, according to the authors, is that our brains respond to acute light—meaning brief exposures to light—through a different neural pathway than what’s used for long periods of light exposure, a pathway that doesn’t involve the SCN.

“If these two effects—acute and long-term light exposure—were driven through the same pathway, then every minor light exposure would run the risk of completely shifting our body’s circadian rhythms,” Schmidt said.

The findings will be published this week in the journal eLife.

Mice and their brains aren’t a perfect proxy for people, obviously. And even if the same general principle does apply to us, Schmidt and her team say there’s no clear lead on where these other pathways could exist in the brain. And there’s undoubtedly a point where being exposed to light late at night too long or too often can start to affect our internal clock—even if where that point lies is still a mystery right now. There needs to be a lot much research studying these questions and others.

What is clear, the authors cautioned, is that chronic nighttime light exposure, and the disruptions to our sleep it can cause, can be very bad for health. In other words, don’t use this study as an excuse to start regularly binge-watching Netflix till 4 a.m.

“Light at the wrong time of day is now recognized as a carcinogen,” Schmidt said. “We want people to feel alert while they are exposed to light without getting the health risks that are associated with shifted circadian rhythms, such as diabetes, depression and even cancer.”

https://gizmodo.com/checking-your-phone-at-night-wont-necessarily-throw-off-1836603924

Advertisements

Blue light’s rap sheet is growing ever longer. Researchers have connected the high-energy visible light, which emanates from both the sun and your cell phone (and just about every other digital device in our hands and on our bedside tables), to disruptions in the body’s circadian rhythms. And physicians have drawn attention to the relationship between our favorite devices and eye problems, ranging from everyday eye strain to glaucoma to macular degeneration.

Humans can see a thin spectrum of light, ranging from red to violet. Shorter wavelengths appear blue, while the longer ones appear red. What appears as white light, whether it’s from sunlight or screen time, actually includes almost every color in the spectrum. In a recent paper published in the journal Scientific Reports, researchers at the University of Toledo have begun to parse the process by which close or prolonged exposure to the 445 nanometer shortwave called “blue light” can trigger damage irreversible damage in eye cells. The results could have profound consequences for consumer technology.

“Photoreceptors are like the vehicle. Retinal is the gas,” says study author and chemistry professor Ajith Karunarathne. In the lab, when cells from the eye were exposed to blue light directly—in theory, mimicking what happens when we stare at our phone or computer screens—the high-intensity waves trigger a chemical reaction in the retinal molecules in the eye. The blue light causes the retinal to oxidize, creating “toxic chemical species,” according to Karunarathne. The retinal, energized by this particular band of light, kills the photoreceptor cells, which do not grow back once they are damaged. If retinal is the gas, Karunarathne says, then blue light is a dangerous spark.

Catastrophic damage to your vision is hardly guaranteed. But the experiment shows that blue light can kill photoreceptor cells. Murdering enough of them can lead to macular degeneration, an incurable disease that blurs or even eliminates vision.

Blue light occurs naturally in sunlight, which also contains other forms of visible light and ultraviolet and infrared rays. But, Karunarathne points out, we don’t spend that much time staring at the sun. As kids, most of us were taught it would fry our eyes. Digital devices, however, pose a bigger threat. The average American spends almost 11 hours a day in front of some type of screen, according to a 2016 Nielsen poll. Right now, reading this, you’re probably mainlining blue light.

When we stare straight at our screens—especially in the dark—we channel the light into a very small area inside our eyeball. “That can actually intensify the light emitted from the device many many fold,” Karunarathne says. “When you take a magnifying glass and hold it to the sun, you can see how intense the light at the focal point gets. You can burn something.”

Some user experience designers have been criticizing our reliance on blue light, including Amber Case, author of the book Calm Technology. On her Medium blog she documented the way blue light has become “the color of the future,” thanks in part to films like 1982’s Blade Runner. The environmentally-motivated switch from incandescent light bulbs to high-efficiency (and high-wattage) LED bulbs further pushed us into blue light’s path. But, Case writes, “[i]f pop culture has helped lead us into a blue-lit reality that’s hurting us so much, it can help lead us toward a new design aesthetic bathed in orange.”

The military, she notes, still uses red or orange light for many of its interfaces, including those in control rooms and cockpits. “They’re low-impact colors that are great for nighttime shifts,” she writes. They also eliminate blue light-induced “visual artifacts”—the sensation of being blinded by a bright screen in the dark—that often accompany blue light and can be hazardous in some scenarios.

Apple offers a “night shift” setting on its phones, which allow users to blot out the blue and filter their screens through a sunset hue. Aftermarket products designed to control the influx of blue light into our irises are also available, including desktop screen protectors. There are even blue light-filtering sunglasses marketed to specifically to gamers. But as the damage done by blue light becomes clearer—just as our vision is getting blurrier—consumers may demand bigger changes.

Going forward, Karunarathne plans to stay in data-collection mode. “This is a new trend of looking at our devices,” he says. “It will take some time to see if and how much damage these devices can cause over time. When this new generation gets older, the question is, by that time, is the damage done?” But now that he appears to have identified a biochemical pathway for blue light damage, he’s also looking for new interventions. “Who knows. One day we might be able to develop eye drops, that if you know you are going to be exposed to intense light, you could use some of those… to reduce damage.”

https://www.popsci.com/screens-killing-eyes-blue-light?dom=currents&src=syn#page-3