Posts Tagged ‘Blindness’

By Jason Dorrier

t’s been over a decade since artificial retinas first began helping the blind see. But for many people, whose blindness originates beyond the retina, the technology falls short. Which is why new research out of Spain skips the eye entirely, instead sending signals straight to the brain’s visual cortex.

Amazingly, 15 years after losing her sight, Bernardeta Gómez, who suffers from toxic optic neuropathy, used the experimental technology to recognize lights, letters, shapes, people—and even to play a basic video game sent directly to her brain via an implant.

According to MIT Technology Review, Gómez first began working with researchers in late 2018. Over the next six months, she spent four days a week dialing in the technology’s settings and testing its limits.

The system, developed by Eduardo Fernandez, director of neuroengineering at the University of Miguel Hernandez, works like this.

A camera embedded in a pair of thick, black-rimmed glasses records Gómez’s field of view and sends it to a computer. The computer translates the data into electrical impulses the brain can read and forwards it to a brain implant by way of a cable plugged into a port in the skull. The implant stimulates neurons in Gómez’s visual cortex, which her brain interprets as incoming sensory information. Gómez perceives a low-resolution depiction of her surroundings in the form of yellow dots and shapes called phosphenes which she’s learned to interpret as objects in the world around her.

The technology itself is still very much in the early stages—Gómez is the first to test it—but the team aims to work with five more patients in the next few years. Eventually, Fernandez hopes their efforts can help return sight to many more of the world’s blind people.

A Brief History of Artificial Eyes

This isn’t the first time researchers have used technology to help the blind see again.

Roughly two decades ago, the Artificial Retina Project brought together a number of research institutions to develop a device for those suffering retina-destroying diseases. The work resulted in the Argus systems, which, like Fernandez’s system, use a camera mounted on glasses, a computer to translate sensory data, and an implant with an array of electrodes embedded in the retina (instead of the brain).

Over the course of about a decade, researchers developed the Argus I and Argus II systems, ran them through human trials, and gained approval in Europe (2011) and the US (2013) to sell their bionic eyes to eligible individuals.

According to MIT Technology Review, around 350 people use Argus II today, but the company marketing the devices, Second Sight, has pivoted from artificial retinas to the brain itself because far more people, like Gómez, suffer from damage to the neural pathways between eyes and brain.

Just last year, Second Sight was involved in research, along with UCLA and Baylor, testing a system that also skips the retina and sends visual information straight to the brain.

The system, called Orion, is similar to Argus II. A feed from a video camera mounted on dark glasses is converted to electric pulses sent to an implant that stimulates the brain. The device is wireless and includes a belt with a button to amplify dark objects in the sun or light objects in the dark. Like Fernandez’s system, the user sees a low-resolution pattern of phosphenes they interpret as objects.

“I’ll see little white dots on a black background, like looking up at the stars at night,” said Jason Esterhuizen, who was the second research subject to receive the device. “As a person walks toward me, I might see three little dots. As they move closer to me, more and more dots light up.”

Though the research is promising—it’s designated an FDA Breakthrough Device and is being trialed with six patients—Dr. Daniel Yoshor, study leader and neurosurgeon, cautioned the Guardian last year that it’s “still a long way from what we hope to achieve.”

The Road Ahead

Brain implants are far riskier than eye implants, and if the original Argus system is any indication, it may be years before these new devices are used widely beyond research.

Still, brain-machine interfaces (BMIs) are quickly advancing on a number of fronts.

The implant used in Fernandez’s research is a fairly common device called a Utah array. The square array is a few millimeters wide and contains 100 electrode spikes which are inserted into the brain. Each spike stimulates a few neurons. Similar implants have helped paralyzed folks control robotic arms and type messages with just their thoughts.

Though they’ve been the source of several BMI breakthroughs, the arrays aren’t perfect.

The electrodes damage surrounding brain tissue, scarring renders them useless all too quickly, and they only interact with a handful of neurons. The ideal device would be wireless, last decades in the brain—limiting the number of surgeries needed—and offer greater precision and resolution.

Ferndandez believes his implant can be modified to last decades, and while the current maximum resolution is 10 by 10 pixels, he envisions one day implanting as many as 6 on each side of the brain to deliver a resolution of at least 60 by 60 pixels

In addition, new technologies are in the works. Famously, Elon Musk’s company Neuralink is developing soft, thread-like electrodes that are deftly laced into brain tissue by a robot. Neuralink is aiming to include 3,000 electrodes on their device to chat up far more neurons than is currently possible (though it’s not clear whether there’s a limit to how many more neurons actually add value). Still other approaches, that are likely further out, do away with electrodes altogether, using light or chemicals to control gene-edited neurons.

Fernandez’s process also relies on more than just the hardware. The team used machine learning, for example, to write the software that translates visual information into neural code. This can be further refined, and in the coming years, as they work on the system as a whole, the components will no doubt improve in parallel.

But how quickly it all comes together in a product for wider use isn’t clear.

Fernandez is quick to dial back expectations—pointing out that these are still early experiments, and he doesn’t want to get anyone’s hopes up. Still, given the choice, Gómez said she’d have elected to keep the implant and wouldn’t think twice about installing version two.

“This is an exciting time in neuroscience and neurotechnology, and I feel that within my lifetime we can restore functional sight to the blind,” Yoshor said last year.

Blind Woman Sees With New Implant, Plays Video Game Sent Straight to Her Brain

By David Freeman

No one is ditching the night-vision goggles just yet, but scientists working in the United States and China have developed a technique that they say could one day give humans the ability to see in the dark.

The technique involves injecting the eyes with particles that act like tiny antennae that take infrared light — wavelengths that are invisible to humans and other mammals — and convert it to visible wavelengths. Mammals can see wavelengths in just a sliver of the electromagnetic spectrum, and the new technique is designed to widen that sliver.

The nanoparticle injections haven’t been tried on humans, but experiments on mice show that they confer the ability to see infrared light without interfering with the perception of light in the visible range. The effect worked during the day and at night and lasted for several weeks. The rodents were left unharmed once it wore off.

Gang Han, a chemist at the University of Massachusetts Medical School and a co-author of a new paper describing the research, said in a statement that the technique could lead to a better understanding of visual perception and possibly lead to new ways to treat color blindness.

But those are far from the only possible applications if the technique can be made to work safely in other mammals, including humans. In an email to NBC News MACH, Han said it might be possible to use nanoparticle injections to create “superdogs” that could make it easier to apprehend lawbreakers in darkness.

“For ordinary people,” he added, “we may also see our sky in a completely different way” both at night and during the day because many celestial objects give off infrared light.

The technique doesn’t confer the ability to see the longer-wavelength infrared light given off by living bodies and other warm objects, Tian Xue, a neuroscientist at the University of Science and Technology of China and a co-author of the paper, said in an email. But at least theoretically, it could give humans the ability to see bodies and objects in darkness without the use of night-vision gear — though an infrared light would still be needed.

For their research, Han, Xue and their collaborators injected the rodents’ eyes with nanoparticles treated with proteins that helped “glue” the particles to light-sensitive cells in the animals’ retinas. Once the tiny antennae were in place, the scientists hypothesized, the nanoparticles would convert infrared light into shorter wavelengths, which the animals would then perceive as green light.

To make sure the mice were actually seeing the converted infrared light, the scientists subjected the animals to a number of tests, including one in which they were given a choice of entering a totally dark box or one illuminated only with infrared light. (Mice are nocturnal, and ordinarily they prefer darkness.) Control animals showed no preference — because both boxes appeared dark to them — while treated mice showed a distinct preference for the dark box.

Other scientists praised the research while expressing doubts about trying the technique in humans.

Harvard neuroscientist Michael Do said in an email that the experiments were “sophisticated” and that the technique was likely to work in humans as well as in mice. But he said it was unclear just how sharp the infrared vision would be in humans, and he cautioned that the injections might damage delicate structures in the eye.

Glen Jeffery, a neuroscientist at the University College London, expressed similar praise for the research — but even graver doubts. “Injecting any material under the retina is risky and should never be done unless there is a clear and justifiable clinical reason…” he said in an email. “I have no idea how you could use this technology to human advantage and would never support its application on healthy humans.”

But the researchers are moving ahead. Han said the team planned to test the technique in bigger animals — possibly dogs.

Thanks to Kebmodee for bringing this to the It’s Interesting community.

A gamer that can’t see at all has posted that he is set to hit 10000 in-game kills soon.

by Ethan Rakin

Despite the much accepted reasoning that if one might want to play a video game, they will need at the very least their five basic senses intact, a blind gamer is doing his best to prove that school of though wrong.

Reddit user tj_the_blind_gamer posted on the platform last week that he is currently at almost 8000 in-game kills in the popular game “Call of Duty: World War 2”.

According to him, “all of those kills were gained without being able to see the game” due to a condition called retinopathy of prematurity, That means he was born with poor vision and by the time he was 15, he had lost all sight in both of his eyes.

He also uploads his gameplay to his Youtube channel, which he created after noticing that there weren’t any other sightless “Call of Duty” streamers despite the franchise’s popularity.

He plays the games because he does indeed enjoy it, but he also streams himself playing sometimes so that he can raise awareness to dispel any stereotypes about the less-able being unable to play video games, Engadget reported.

“It’s just simply more fun for me, to know that I have the skill to play a game most people consider to be a visual game and still be able to enjoy that experience with friends”, he said.

How does he actually play the game, you ask?

First-person shooters like “Call of Duty” normally require quite the amount of concentration to succeed, and he uses the sounds made by footsteps in the game to listen for other players.

He uses surround-sound headphones, dials down the background music and chooses in-game perks that enhance audio feedback to track down his enemies.

To get around the map, he shoots ahead to determine if he is hitting a wall or the ground as the sound would be different, which is similar to how a bat navigates itself.

Of course, he still has troubles with the game like hitting enemies from far away or getting around those pesky landmines, but even that doesn’t discourage the man known to his subscribers as TJ from getting to his goal of ten thousand in-game kills – an impressive feat for anyone.

He said: “I do my best to show everybody that even though people with disabilities may not play video games as often as people without disabilities, we still do.”

An array of semitransparent organic pixels on top of a ultrathin sheet of gold. The thickness of both the organic islands and the underlying gold is more than one-hundred times thinner than a single neuron.

SUMMARY: A simple retinal prosthesis is under development. Fabricated using cheap and widely-available organic pigments used in printing inks and cosmetics, it consists of tiny pixels like a digital camera sensor on a nanometric scale. Researchers hope that it can restore sight to blind people.

Researchers led by Eric Glowacki, principal investigator of the organic nanocrystals subgroup in the Laboratory of Organic Electronics, Linköping University, have developed a tiny, simple photoactive film that converts light impulses into electrical signals. These signals in turn stimulate neurons (nerve cells). The research group has chosen to focus on a particularly pressing application, artificial retinas that may in the future restore sight to blind people. The Swedish team, specializing in nanomaterials and electronic devices, worked together with researchers in Israel, Italy and Austria to optimise the technology. Experiments in vision restoration were carried out by the group of Yael Hanein at Tel Aviv University in Israel. Yael Hanein’s group is a world-leader in the interface between electronics and the nervous system.

The results have recently been published in the scientific journal Advanced Materials.

The retina consists of several thin layers of cells. Light-sensitive neurons in the back of the eye convert incident light to electric signals, while other cells process the nerve impulses and transmit them onwards along the optic nerve to an area of the brain known as the “visual cortex.” An artificial retina may be surgically implanted into the eye if a person’s sight has been lost as a consequence of the light-sensitive cells becoming degraded, thus failing to convert light into electric pulses.

The artificial retina consists of a thin circular film of photoactive material, and is similar to an individual pixel in a digital camera sensor. Each pixel is truly microscopic — it is about 100 times thinner than a single cell and has a diameter smaller than the diameter of a human hair. It consists of a pigment of semi-conducting nanocrystals. Such pigments are cheap and non-toxic, and are commonly used in commercial cosmetics and tattooing ink.

“We have optimised the photoactive film for near-infrared light, since biological tissues, such as bone, blood and skin, are most transparent at these wavelengths. This raises the possibility of other applications in humans in the future,” says Eric Glowacki.

He describes the artificial retina as a microscopic doughnut, with the crystal-containing pigment in the middle and a tiny metal ring around it. It acts without any external connectors, and the nerve cells are activated without a delay.

“The response time must be short if we are to gain control of the stimulation of nerve cells,” says David Rand, postdoctoral researcher at Tel Aviv University. “Here, the nerve cells are activated directly. We have shown that our device can be used to stimulate not only neurons in the brain but also neurons in non-functioning retinas.”