Posts Tagged ‘Bahar Gholipour’

172592621

By Bahar Gholipour

A 49-year-old man in Brazil survived a stroke but underwent a strange personality change afterward — he developed “pathological generosity,” according to a report of his case.

His willingness to give liberally to others – including people he barely knew — dramatically changed his life. He would spend his money on children he met on the street, buying them soda, candies and junk food, his wife told the doctors. Mr. A, as the man is called in the case report, became unable to manage his financial life, or resume his job as a department manager within a large corporation.

The stroke apparently left Mr. A with “excessive and persistent generosity,” the researchers, led by Dr. Leonardo Fontenelle from the Federal University of Rio de Janeiro.

“Stroke can cause a whole variety of neuropsychological and behavioral changes,” said Dr. Larry Goldstein, neurologist and director of the Stroke Center at Duke University, who wasn’t involved with the case. “Although the observation of personality change is not that unusual, this particular one is apparently novel,” he told LiveScience.

Very often, a behavior change after a stroke depends on the extent of injury and the location of the injury in the brain, Goldstein said.


How stroke affects personality

A stroke occurs when a blood clot blocks the blood supply to the brain, or when a blood vessel in the brain bursts. Brain damage caused by low oxygen supply can lead to emotional changes, most commonly depression, but strokes have also been known to cause pathological laughing or crying, or neglect syndrome, in which people don’t recognize one side of their visual field.

In Mr. A’s case, the stroke was due to bleeding in the brain, related to his high blood pressure.

Understanding exactly what change in the brain was driving Mr. A’s excessive generosity is very interesting for scientists, especially because the condition is in many respects the opposite of disorders such as hoarding and sociopathy, the researchers said.

Doctors determined Mr. A’s stroke occurred in a subcortical region, (below the cerebral cortex, where higher-level thinking occurs), and the damage could have affected brain areas associated with regulating normal behaviors.

But knowing the location of a stroke doesn’t necessarily predict the behavioral change. The networking that happens in the brain means there are often effects in areas of the brain not right next to the injury, Goldstein said.

Studies have pointed to a couple of brain structures as being involved in acts of generosity, such as anonymously donating to charities. These brain structures include the brain’s reward system, the researchers said.

A life forever changed?

Mr. A’s pathological generosity may provide new insights into which brain areas affect “the delicate balance between altruism and egoism, which make up one of the pillars of ordinary social motivation and decision making,” the researchers said.

Other instances of excessive benevolent behavior have been seen in cases of people with mania, Parkinson’s disease treated by certain medications, and forms of dementia.

When doctors carried out a psychological evaluation of Mr. A, they didn’t find any evidence of manic symptoms or dementia. Mr. A. reported being depressed, forgetful and unable to pay attention. He also showed some behaviors that have been linked to damage in the frontal lobe of the brain, including lack of persistence and planning, and impaired judgment, according to the report.

A CT scan showed blood flow to several brain regions, including areas in the frontal lobe, was low. These regions, although far from the bleed focus, are connected with it by neural pathways. The damage in these pathways might have disrupted the interplay of neural systems that underpin key dimensions of personality, the researchers said.

Mr. A was put on medication to treat his depression. After two years, he said he felt cured, and stopped the depression treatment, but his pathological generosity was unchanged. He was aware of changes in his behavior. According to the researchers, he often claimed, “I saw death from up-close, now I want to be in high spirits.”

When doctors asked whether he intended to resume his former job, he replied that he had already worked enough, and that it was now time “to enjoy life, which is too short.”

https://www.livescience.com/39416-pathological-generosity-stroke.html

By Bahar Gholipour

Schizophrenia may have a special fingerprint in the brain, even before its symptoms fully emerge. Now, a new method of analyzing this fingerprint — found within the folds of the brain — could help predict which young adults at high risk for schizophrenia will go on to develop the illness, a new study suggests.

The method, which was based on MRI scans of the brain, looked at the correlation between the amount of folding in different brain areas, which can reflect the strength of underlying connections between those areas. Using this method, the researchers could predict the outcome of 79 high-risk individuals with 80 percent accuracy, they reported yesterday (April 25) in the journal JAMA Psychiatry.

These findings need to be confirmed in larger future studies before the method can be used to in the clinic, the researchers said. And even then, a simple brain scan on its own won’t be enough to predict the future — it has to be used in conjunction with other symptoms for which a person is seeking help. But the goal is to find what clues from the brain’s structure could help clinicians better identify and treat patients before they experience full-blown schizophrenia and drop out of schools or lose their jobs due to a psychotic episode, said study investigator Dr. Lena Palaniyappan, an associate professor of psychiatry at Western University in Ontario, Canada.

Partner Series
What the Folds of Your Brain Could Tell You About Schizophrenia Risk
A simplified representation of the folds in different brain regions.
Credit: University Psychiatric Clinics Basel
Schizophrenia may have a special fingerprint in the brain, even before its symptoms fully emerge. Now, a new method of analyzing this fingerprint — found within the folds of the brain — could help predict which young adults at high risk for schizophrenia will go on to develop the illness, a new study suggests.

The method, which was based on MRI scans of the brain, looked at the correlation between the amount of folding in different brain areas, which can reflect the strength of underlying connections between those areas. Using this method, the researchers could predict the outcome of 79 high-risk individuals with 80 percent accuracy, they reported yesterday (April 25) in the journal JAMA Psychiatry.

These findings need to be confirmed in larger future studies before the method can be used to in the clinic, the researchers said. And even then, a simple brain scan on its own won’t be enough to predict the future — it has to be used in conjunction with other symptoms for which a person is seeking help. But the goal is to find what clues from the brain’s structure could help clinicians better identify and treat patients before they experience full-blown schizophrenia and drop out of schools or lose their jobs due to a psychotic episode, said study investigator Dr. Lena Palaniyappan, an associate professor of psychiatry at Western University in Ontario, Canada. [10 Things You Didn’t Know About the Brain]

Schizophrenia is a mental disorder characterized by psychotic episodes involving delusional thoughts and distorted perception. It is often preceded by subtle symptoms: A teenager who is withdrawn and suspicious, has anxiety, depression or sleep problems, and who experiences subtle changes in thinking and perception may be deemed by a doctor to be at high risk for developing schizophrenia in the next two or three years. But having these symptoms, which overlap with those of many other mental health conditions, doesn’t mean one will surely go on to develop schizophrenia — in fact, just about a third of individuals with these symptoms do.

“It’s really hard to know who is going to develop schizophrenia and who is not,” Palaniyappan told Live Science.

A wrinkle in the brain

Compared with other animals, the surface of the human brain is especially wrinkly — likely as a solution to fit a large brain inside a small skull. The patterns of folds in the brain’s surface, called the cortex, are determined before birth and change very little after the first or second year of life.

Previous studies of people with conditions such as schizophrenia and autism have detected local differences in folding patterns. For example, they have found a smoother surface in one brain region or a more wrinkled one in another, when comparing people with these conditions to the general population.

Palaniyappan and his colleagues examined all the brain regions and the relationship between their folding patterns. The idea is that the degree of folding would be similar between two brain areas if they are strongly interconnected. So, if an individual doesn’t show the same folding patterns as everyone else, it may suggest a problem in the wiring beneath the brain’s surface.

“Imagine two brain regions have a strong wire between them. If you cut the wire off, both of these regions would not be properly folded,” Palaniyappan said.

Sorting through scans

The team collected MRI brain scans from a group of people in Switzerland, who were on average 24 years old. The participants included 79 people with symptoms suggesting a high risk of schizophrenia and 44 healthy control subjects.

Then, the researchers followed the participants for four years and found 16 people in the high-risk group developed schizophrenia.

Looking back at the brain scans, the researchers found that 80 percent of the time, the relationship between folding patterns could correctly identify who developed schizophrenia and who didn’t. Those who did seemed to have a disorganized brain network — the folds of their cortical regions didn’t go hand in hand as much as the folds in the controls and in the high-risk people who didn’t develop the illness.

The earlier patients with schizophrenia receive psychotherapy or medication, the better they fare, according to a 2005 review of 30 studies published in the American Journal of Psychiatry. Early intervention may even change the course of the illness. One study published last year in Nature Neuropsychopharmacology, for instance, found a longer period of untreated symptoms was associated with weaker connectivity in the brain, especially in areas associated with responding to antipsychotic medications.

https://www.livescience.com/62414-brain-folds-schizophrenia.html

By Bahar Gholipour

The consciousness-altering drug LSD is best known for its bizarre visual effects: even a small dose of the drug can turn the flat walls of your living room into something out of Wonderland. Objects bend, colors blend and intricate patterns cast a shimmer on everything you see. But what would LSD feel like if you couldn’t see?

In an unusual case report published in the April issue of the journal Cognition and Consciousness, a blind 70-year-old former rock musician has some answers.

The man, who is referred to as “Mr. Blue Pentagon” after his favorite kind of LSD, gave researchers a detailed account of what he experienced when taking the drug during his music career in the 1970s. Mr. Pentagon was born blind. He did not perceive vision, with or without LSD. Instead, under the influence of psychedelics, he had strong auditory and tactile hallucinations, including an overlap of the two in a form of synesthesia, according to the report.

“I never had any visual images come to me. I can’t see or imagine what light or dark might look like,” Mr. Blue Pentagon told the researchers. But under the influence of LSD (lysergic acid diethylamide, also known as acid), sounds felt unique and listening to music felt like being immersed in a waterfall, he said. “The music of Bach’s third Brandenburg concerto brought on the waterfall effect. I could hear violins playing in my soul and found myself having a one hour long monologue using different tones of voices … LSD gave everything ‘height.’ The sounds coming from songs I would normally listen to became three dimensional, deep and delayed.”

Mr. Blue Pentagon’s account is a rare glimpse into how LSD may feel in the absence of vision. Beyond a few Q&A threads on Reddit, the only other resource is a 1963 study of 24 blind people, which was actually conducted by an ophthalmologist to test whether a functioning retina (the part of the eye that senses light) is enough for visual hallucinations (it’s not), and didn’t include the participants’ psychological experiences beyond vision.

Understanding Mr. Blue Pentagon’s experience with the drugmay give unique insights about how novel synesthetic experiences through multiple senses are concocted by the brain — especially a brain that is wired differently due to lack of vision, according to the researchers from the University of Bath in the U.K. who published the report. Synesthesia is a rare condition in which one sense is perceived in the form of another; for example, a person may “hear” colors or “taste” sounds. This overlap of senses may ocurr because of cross communication between brain networks processing each sense, scientists have proposed.

As numerous anecdotal reports suggest and a few studies have documented, LSD causes auditory-visual synesthesia, an experience in which sounds and sights influence each other. Mr. Blue Pentagon appeared to experience a similar phenomenon, but rather than mixing sound and sight, it involved the senses that were available to him: sound and touch, the researchers suggested.

Still, there’s only so much to be gleaned from a qualitative report based on a single person.

“It is next to impossible to gain ‘general’ insights from individual narratives,” said Ilsa Jerome, a clinical researcher for the Multidisciplinary Association for Psychedelic Studies (MAPS) who was not involved with the report.

Jerome, who is visually impaired herself, said she is unconvinced that having a visual impairment provides any special insight on how LSD alters sensory processes. “But it might provide greater motivation or interest in the sensory impact of psychedelic compounds,” she told Live Science.

The brain in blindness
The details of what exactly LSD does in the brain are still unclear, but research suggests that the drug’s psychedelic effects occur because LSD alters neuronal communication in the brain. Specifically, LSD latches onto receptors for serotonin, one of the neurotranmitters neurons use to communicate. The visual hallucinations are likely a result of LSD stimulating these receptors in the visual cortex, the part of the brain that processes light, color and other visual information. [10 Things You Didn’t Know About the Brain]

The first studyto look at the brain effects of LSD using modern technology was published recently, in 2016, in the journal Proceedings of the National Academy of Sciences. In that study, when people took LSD, the researchers observed that the visual cortex was unusually activeand showed greater synchronous activity with many areas of the brain. This connectivity was correlated with the complex visual hallucinations reported by the participants.

The visual cortex develops into a fully functioning system during early life in response to sensory information from the eyes. But in the absence of early visual experience, which is the case for people born blind, the visual cortex doesn’t develop normally. Instead, it rewires to process sound and touch.

This could explain the nature of Mr. Blue Pentagon’s experience with LSD.

“I expect that the cortical ‘real estate’ that would have housed vision does not do so in Mr. Pentagon’s case,” Jerome said. “So LSD may be doing the same thing with that area of cortex, but since that area is, for him, connected with other senses, those experiences — such as sound, touch or sense of self in space — are altered.”

Visual or other sensory hallucinations are only one part of LSD’s effects. The compound can cause profound changes in emotions and consciousness, all of which are reported by both blind and sighted people. The few studies that exist on the subject suggest LSD may be doing this by lowering the barriers between brain networks, allowing them to communicate in a more flexible way.

Original article on Live Science.

https://www.livescience.com/62343-psychedelics-lsd-effects-blind-people.html